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1 Executive Summary 
This document is the Final Report for the “Development and Application of Automated Rockfall 
Recognition using Computer Vision Approaches applied to Thermal Video from Open Pit Mines” 
project (NIOSH BAA#: 75D301-22-R-61070), referred to herein as the Automated Rockfall 
Recognition Project. This work represents the second phase of the Geotechnical Center of 
Excellence’s (GCE) research into the use of long-wave infrared (thermal) cameras as a solution for 
detecting, tracking, and alarming for rockfall in open pit mining environments. The Phase 1 
Application Testing Project showed that rockfall can be reliably observed in the thermal infrared. 
Phase 2 has produced an algorithmic solution that automatically detects and alarms for rockfall in 
real-time, which marks a significant advancement in monitoring and mitigating rockfall hazards in 
mining environments. A list of significant observations and recommendations is provided below. 

1. Algorithm Development. Phase 2 successfully developed an automated method for
detecting and alarming for rockfall events using thermal video. The algorithm operates
efficiently on hardware with limited processing power, making it suitable for deployment on
rugged laptops without high-end GPUs. The detection system tracks multiple objects,
utilizing predictive filtering and motion heuristics based on object movement rather than
predefined shapes. This approach eliminates the need for machine learning and retraining,
ensuring consistent performance across varied environments.

The technology readiness level (TRL) of the prototype system is estimated at a TRL6 as
automated detection has been successfully demonstrated in relevant environments. Future
work includes refining the algorithm, enhancing data acquisition systems, and incorporating
feedback from industry focus groups. Continued development will focus on creating a
commercially viable solution for tactical monitoring of safety-critical areas, with potential
applications extending to failure forecasting based on empirical correlations. Future
advancements will enhance algorithm efficiency, incorporate additional geotechnical
applications, and improve user interfaces for diverse hardware environments. Predictive
capabilities based on meteorological data will be expanded, and alarming systems will be
refined to include frequency-based triggers for prediction of larger slope instabilities.

2. Prototype Tactical Monitoring System. A prototype tactical monitoring system was
developed, featuring a thermal camera, rugged laptop, and robust power system, designed
for deployment in extreme environments. The system's design ensures operational efficiency
and adaptability, with future work focused on enhancing its portability and reliability.  

3. Deployments and Testing. The automated rockfall detection algorithm and prototype
tactical monitoring system were tested during a series of deployments over three stages:

1. Initial deployments at the San Xavier student mining laboratory (SX Mine) and a
Nevada mine site highlighted issues with remote connection and power reliability,
which were addressed in subsequent troubleshooting.

2. Secondary deployments to local sites and testing focused on achieving real-time
detection using the prototype tactical monitoring system’s hardware, revealing
processing power limitations that were mitigated through algorithmic optimizations
and multi-core processing.

3. Further deployments to sites near the University of Arizona including the SX Mine
were conducted to test more-efficient software versions. The improved software
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demonstrated successful real-time motion processing with video archiving, resolving 
previous lag issues. 

Testing revealed the need for a lightweight, efficient algorithm suitable for slower computing 
hardware and identified non-critical software features for removal. The system's portability 
and ease of setup can be improved, and future iterations will address power system reliability 
and reduce deployment complexity. 

• Rockfall Forecasting. Data collection and analysis from thermal video and meteorological
recordings provide insights into the factors influencing rockfall initiation. The report details a
methodology for processing and analyzing this data, highlighting the potential significance of
solar irradiance and precipitation in forecasting the probability of rockfall.  

• Recommendations for Future Work. Additional research paths and recommended future
work resulting from this project include:

1. Comparison with alternate and complementary technologies. The thermal rockfall
monitoring solution developed as part of this project will provide important cross-
validation functionality and has the potential to improve the effectiveness and reliability
of other rockfall detection systems. The prototype software and data collection system
should be thoroughly evaluated against complementary monitoring solutions (e.g.,
Doppler radar, LiDAR, photogrammetry) using a quantitative assessment framework.  

2. Development of prototype strategic thermal monitoring tools. Observations made by the
GCE, along with prior studies, suggest additional geotechnical use cases for thermal
imagery that have the potential to enhance miner safety (e.g. Guerin et al., 2019; Schafer
et al., 2023; Rosser et al., 2007). Potential strategic applications to be explored further
include:

a. Detection, delineation, and evolution of groundwater seeps.

b. Quantitative evaluation of catch bench performance.

c. Monitoring of large-scale slope instabilities to inform slope management and
time-of-failure predictions (Schafer et al., 2023; Rosser et al., 2007).

d. Systematic methods for characterization of rock bridges (Guerin et al., 2019).

3. Further development of the algorithm and data collection system to a marketable
monitoring software. The Phase 2 prototype software establishes a groundwork for
developing a commercially viable software system to detect, track, and alarm for rockfall. 
Additional work is needed prior to commercialization, including:

a. Gathering feedback from industry focus groups, incorporating research findings
regarding complementary technologies, and developing a front-end user
interface to increase usability and facilitate deployment across various operating
systems and hardware.

b. Researching necessary hardware, power systems, and computing capabilities to
improve the prototype.

4. Additional research toward rockfall forecasting. Preliminary correlations between
rockfalls detected using the Phase 2 algorithm and concurrent meteorological data
highlight the potential to forecast the probability of rockfall events based on
environmental forces. Continued research on this topic should include:
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a. Strategic deployments of our mobile thermal rockfall detection system
specifically targeting rockfall data collection in a variety of climates through
seasonal weather patterns, heavy dust/smoke particulates, inclement weather
events, and other meteorological phenomena.

b. Exploring advanced statistical methods and machine learning algorithms to
further investigate potential correlations and assess their potential to forecast
probabilities of rockfall.

c. Testing equipment installed on the slope of interest for in-situ data collection of
meteorological parameters and surface temperatures at the rock face. This will
reduce uncertainties related to measurements acquired at varying distances
from the slope.
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2 Introduction 
The Geotechnical Center of Excellence (GCE) at the University of Arizona has identified the use of 
thermal infrared cameras and computer vision algorithms as a potential solution for detecting, 
tracking, and alarming for rockfall in open pit mining environments. Thermal cameras are particularly 
valuable as monitoring tools due to their ability to provide situational awareness throughout the 
diurnal cycle and in various lighting and atmospheric conditions where visible-light cameras have 
reduced effectiveness. This allows for near-continuous real-time monitoring, which is crucial for the 
detection of potential hazardous movements and the initiation of preventative measures to protect 
both personnel and equipment. Thermal cameras can detect rockfall due to the thermal gradient that 
occurs across surface rocks exposed to solar heating and atmospheric cooling and underlying rocks 
which heat and cool more gradually. This differential heating and cooling gives rocks dislodged from 
the surface of a pit slope different thermal signatures relative to the surrounding rock face and the 
freshly exposed rock. This variation in thermal properties allows the exposed, falling, or scoured rock 
surfaces to be detected using thermal imaging. 

The work presented here represents the second phase of the GCE’s research into the use of thermal 
infrared cameras as part of a comprehensive rockfall monitoring solution. The Application Testing 
Project, referred to herein as Project Phase 1, established the effectiveness and reliability of thermal 
imaging cameras to detect and document rockfall events in surface mining operations. Specific aims 
of project Phase 1 included: 

1. Characterization and alignment of necessary parameters for rockfall detection with
capabilities of existing commercial off-the-shelf (COTS) thermal imaging systems.

2. Implementation of a testbed Mobile Monitoring Platform (MMP) to enable systematic
evaluation of six representative COTS cameras with mine operators.

3. Development of a process model to inform detection and identification of rockfalls from
thermal imaging videos and understand the feasibility of human monitoring with thermal
imaging systems.

4. Evaluation of the MMP prototype system by conducting a series of tests under a variety of
realistic mining conditions at nine open-pit mines across the western US and Canada.

At the conclusion of Phase 1, rockfalls were identified via manual inspection of recorded thermal 
video, which is time- and cost-prohibitive. The primary goal of Phase 2 was to develop an automated 
rockfall recognition system for open pit mines using thermal video cameras to detect and alarm for 
rockfalls in real time, facilitating geotechnical risk management and increasing safety. This report 
details the accomplishments and findings of Phase 2, which included three aims: 

1. Development and application of an automated detection algorithm using long-wave infrared
(LWIR) thermal video.

2. Deployment and testing of a prototype system for real-time, tactical monitoring of rockfall in
open pit mining environments.

3. Empirical analysis of the relationship between rockfall and meteorological factors to provide
insight into times of increased risk for rockfall.

Section 4 of this report documents the results of Phase 2, Aim 1, which produced an algorithm to 
automatically detect and alarm for rockfall in real time using COTS thermal cameras and computer 
hardware. This algorithm has been demonstrated on rockfall from multiple mine sites, including over 
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3,800 hours of thermal video from two Phase 1 sites. The algorithm performance was evaluated using 
one week of thermal video taken prior to the Leo failure at the Bingham Canyon mine, indicating 
comparable rates of rockfall detection between the algorithm and a human observer and illustrating 
an exponential acceleration of rockfall events prior to failure (Schafer et al. 2023). Section 5 
discusses Phase 2, Aim 2, which identified desirable video characteristics, including data collection 
and storage methodologies, for use in automated rockfall detection. A prototype standalone tactical 
system was also developed that can run the detection algorithm in real-time and may be deployed in 
minutes by a single operator. Section 6 documents Phase 2, Aim 3, which evaluated environmental 
conditions to determine their effect on the likelihood of rockfall. Environmental data from multiple 
sources was evaluated across the entire deployment period for two mine sites, revealing a 
statistically significant effect of both solar irradiance and rainfall intensity on rockfall occurrence.   
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3 Project Personnel 
The success of the Phase 2 Thermal Imaging Project was made possible through the collaborative 
efforts of the GCE research team. Each team member brought unique skills and expertise to the 
project, contributing to successful completion of overall project objectives and milestones. 
Contributors included: 

• Brad Ross, Principal Investigator. Dr. Ross led the project by setting the strategic vision,
ensuring alignment with project goals and overseeing major project decisions.  

• Julia Potter, Co-Principal Investigator. Potter was responsible for the overall management
of the project, coordinating team activities, oversight of the project budget, and ensuring that 
milestones were met.

• Leonard Brown, Co-Principal Investigator. Dr. Brown contributed expertise in algorithm
development, ensuring the quality and accuracy of the code and prototype software.  

• Chad Williams, Co-Principal Investigator. Dr. Williams provided critical advice on the
practical applications of monitoring technologies and strategies for effective deployment in
the field.

• Benjamin Meyer, Software Engineer. Meyer developed the necessary algorithms for the
thermal imaging project, working closely with the PI and Co-PIs to implement and refine the
software solutions.  

• James McNabb, Senior Engineer. McNabb supported project management tasks and
participated in fieldwork activities, ensuring smooth execution of field operations and data
collection.  

• Bobby Prescott, R&D Engineer. Prescott assisted with development of prototype data
collection system, including interfacing with manufacturer (GroundProbe), and with field
operations and data collection.

• Christian Ortmann, Computing Sciences Researcher. Ortmann focused on the empirical
correlation of thermal imaging data, working under the guidance of senior team members.

• Rahul Jadhav, Undergraduate Researcher. Jadhav contributed to the project by reviewing
thermal video footage from Phase 1 and documenting instances of rockfalls.  

• Gavin Hughes, Undergraduate Researcher. Hughes assisted with gathering and organizing
weather data and testing portability and ease of setup of the prototype tactical system.  

• John Keefner, Project Advisor. Keefner offered valuable feedback and insights on the
applications of monitoring technologies and their deployment strategies, helping to shape
the practical aspects of the project.  

• Jose Restrepo, Graduate Research Assistant. Restrepo worked on upgrading the MMP
under the supervision of the Senior Engineer.  

• Yash Sihag, Undergraduate Researcher. Sihag assisted in compiling and organizing the final
report.

• Greatness Ojum, Undergraduate Researcher. Ojum reviewed Phase 1 thermal footage,
documenting instances of rockfalls and guided Phase 2 undergraduate researchers with
rockfall documentation procedures as needed.

• Daouda Berthe, Undergraduate Researcher. Berthe reviewed Phase 1 thermal footage,
documenting instances of rockfalls.
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4 Automated Rockfall Detection   
An automated method of detecting and alarming for rockfall and other hazardous falling objects has 
been developed as part of project Phase 2, Aim 1. The automated tracking system utilizes long-wave 
infrared (LWIR or “thermal”) video to monitor rockfall at all stages of the diurnal cycle, through dust 
and light-to-moderate precipitation. The automated detection approach is driven by the 
characteristics of the prototype system hardware and by our subject matter (falling rock). The Dell 
Rugged Latitude laptop used in the prototype system includes an Intel I7-8650U processor and lacks 
an NVIDIA graphics processing unit (GPU). Operating within these hardware constraints required the 
use of a CPU-based algorithm that does not leverage Compute Unified Device Architecture (CUDA)-
based parallelism that could be run on an NVIDIA GPU. The prototype tactical system’s processor 
limitations have necessitated prioritizing computational efficiency during development, resulting in 
an algorithm that does not require a high-end CPU or graphics card to run in real time. 

Rockfall can include large and easily visible singular rocks, slides of aggregate material, or falling 
objects that are only evident on thermal video from the scouring left by their impact with the rock 
face. Due to the irregular structure of slope surfaces in open pit mines and similar environments, 
rockfall can drastically change direction and shape from frame to frame as falling objects are 
deflected, broken apart, or dislodge other material. Based on these characteristics, the algorithm 
utilizes predictive filtering and motion heuristics, in which multiple objects are simultaneously 
tracked and their movements are characterized as hazardous or not. 

4.1 Thermal Imaging for Rockfall Detection 
Commercially available uncooled thermal cameras are low resolution and record at slower frame 
rates when compared to modern visual-light cameras. Despite these drawbacks, thermal cameras 
are capable of operation day or night, through light to moderate particulates such as dust or smoke, 
and in conditions of light to moderate precipitation that would render visual-light cameras 
ineffective. As rocks dislodge or impact slopes, there is a thermal difference between the freshly 
exposed or scoured area and the surrounding rock face, as well as between the falling rock and   
the surrounding face. These differences are detectable through thermal imaging and can provide 
greater contrast than may be seen with a visible-light video of rocks falling past similarly colored 
material. Phase 1 of our project proved that thermal cameras are effective in revealing rockfall 
throughout the diurnal cycle and in extreme ambient temperatures (ranging from –32 °C to 50 °C). 

4.2 Algorithmic Process 
A software algorithm has been implemented to detect and characterize object motion and then to 
issue alarms where appropriate. The rapidly changing shape of rockfall events based on the 
interaction between moving or fragmenting rock and underlying slope structure makes the subject 
material very difficult to characterize or track based on similar corners or edges as is done in most 
machine learning methods of object recognition and tracking. This reinforces the need for a solution 
based on how an object moves rather than the object’s specific characteristics (size, shape). The 
algorithm for rockfall detection and tracking consists of the following steps: 

1. Background Generation: To minimize detections due to pixel flicker in thermal video, we 
generate a background image from the average of the previous 50 frames. This is used to 
minimize false motion detections from slight brightness flickering of pixels (common in this 
style of thermal camera). 
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2. Background segmentation: The resulting background image is then compared to the current 
frame of video, and any pixels varying in intensity from their corresponding background are
identified as possible moving objects.

3. Blob Detection: These motion detections are grouped into areas or regions of motion by
combining nearby pixels. This consolidates close movement detections, allowing the system 
to more efficiently characterize motion than would otherwise be possible.

4. Location Prediction: Expected locations for all previously identified moving objects are
estimated using predictive Kalman filters (Kalman, 1960). These filters consider previously
known locations of the object plus current velocity to judge likely location.

5. Track Assignment: Observed current-frame motion is compared with the expected locations 
of all previously identified moving objects using a Hungarian/Munkres algorithm with
thresholding (Munkres 1957). Motion near the predicted location of tracked objects is used
to extend movement paths. Motion outside of those matches causes the creation of new
track assignments (recognition of new moving objects). Any other identified objects are
flagged as “unseen” until motion is visible along an object’s expected path.

6. Motion Characterization: The paths of all identified moving objects are evaluated against
the characteristics of a “hazardous falling object”.  For this study, characteristics used to
define hazardous fall include direction and speed of movement (velocity).  

7. Alarming: Alarms are triggered when tracked objects meet the motion characterization
criteria. Alarm options currently include screen representation of motion path, audio alert,
console/JSON outputs, or logging to text or CSV files.

Figure 4-1 presents an example of the algorithm’s tracking results on a human-initiated rockfall. 
Figure 4-2 illustrates important algorithmic steps and results on rockfall caused by a planned blast 
at an open pit mine. The automated rockfall detection can focus on rockfall of different scales and 
shapes and can track a single object or multiple fall events simultaneously. 

Figure 4-1. Example of algorithm tracking results on a human-initiated rockfall. a) frame taken one second after initial 
detection of rockfall. b) frame taken six seconds after initial detection of rockfall. c) frame taken eight seconds after 
initiation of rockfall. d) frame taken thirteen seconds after initiation of rockfall. 

Figure 4-2. Example of algorithm performance on rockfall caused by a planned blast at an open pit mine. a) frame taken 
7 seconds after blast event. b) frame taken 15 seconds after event. c) subtracted background showing instantaneous 
differences / motion in current frame vs previous 50 frames, taken 15 seconds after event. d) tracked fall detections 
from start of video clip to current frame. 
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4.2.1 Tailoring Results to Sites 
A preliminary graphical user interface (GUI) was developed to enable tailoring of the algorithm to site 
specific requirements. Key parameters for background segmentation and motion characterization 
are defined by the user based on
deployment site characteristics. These 
include video stabilization options, 
controls for minimum and maximum 
speeds for a fall detection, how long a 
tracked object can be stationary or unseen 
before being retired from consideration, 
maximum distance that a motion could be 
considered as part of an existing fall, and 
which angles of motion should be 
considered as hazardous falls. The GUI also 
includes a masking option to exclude areas 
of noninterest from consideration and 
methods for defining expected fall angles based on the orientation of the pit  walls in the camera  
frame (Figure 4-3).   

4.3 Deployment and Testing 
The automated rockfall detection algorithm and prototype tactical monitoring system were tested 
during a series of deployments over three phases: 

1. Initial deployments of the prototype system and a preliminary version of the algorithm were
completed at the San Xavier student mining laboratory and a Nevada mine site. These tests
highlighted issues with remote connection and power reliability, which were addressed in
subsequent troubleshooting.

2. The prototype system was re-deployed at the SX mine with an updated version of the
algorithm to evaluate real-time detection performance. These tests revealed computing
performance limitations that were mitigated through algorithmic optimizations and multi-
core processing.

3. The final testing stage was again conducted at the SX Mine. During this phase, the improved
software demonstrated successful real-time motion processing with video archiving,
indicating that the issues observed during testing Phases 1 and 2 had been resolved.

More details about the test deployments and lessons learned are summarized in the following 
subsections.   

Testing Stage 1 – Video Archiving and Recording (August – September 2023). Initial deployments 
consisted of several tests at the University of Arizona (UArizona)’s SX Mine in August 2023. Testing at 
the SX Mine yielded successful recording and archiving of thermal video. The system was 
subsequently deployed in September 2023 for two days of testing at a mine in Nevada. Several issues 
were encountered during testing at the Nevada Mine. The system was able to record and archive 
video during the first day of testing, but remote connection was unsuccessful. There was also 
significant lag in tracking live rockfalls. After troubleshooting, the system was deployed for a second 
day of testing to archive video without simultaneous tracking. During this time, the power 
components of the prototype system experienced an unexplained failure which ended data 
collection earlier than anticipated. The system was transported to GroundProbe’s Tucson facility for 

Figure 4-3. Interface options for site characterization, including 
an example of the masking feature applied to an active haul road 
(left) and an example of user-defined expected angle of rockfall 
for deployment sites without three-dimensional topographic 
data (right). 
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troubleshooting, where the issue was identified as a faulty charge controller and addressed. 
However, concerns regarding the reliability of the power system persisted due to intermittent outages 
during subsequent deployments which persisted through stages 2 and 3. Future deployments were 
limited to mines within driving distance of UArizona to allow for more efficient troubleshooting. 

Testing Stage 2 – Initial Algorithm Implementation (October 2023). A second phase of testing 
performed between the GCE’s offices on the UArizona campus and at the SX Mine commenced in 
October 2023. This phase focused on assessing the system’s ability to perform real-time detection. 
While the prototype successfully detected movement in real-time, limitations in the laptop 
computer’s processing power were observed. The system was not able to concurrently perform real-
time detection while also archiving recorded video for subsequent analysis. 

Testing Stage 3 – Algorithm Optimization (October 2023 – March 2024). The issues observed during 
Testing Phase 2 provided valuable insights that led to improved algorithm efficiency. Each stage of 
the algorithm was evaluated to determine causes of delay and potential processing improvements 
as follows: 

• Roughly 15% of the algorithm’s processing time was consumed by an optical flow calculation
used only in the video stabilization operation on the camera input. Phases 1 and 2 of testing
revealed no significant detection benefits resulting from the stabilization process, so the
video stabilization step was removed.  

• Archiving the original thermal video without the algorithm outputs accounted for roughly
another third (32%) of processing time. Archiving original video will be optional in a
production version of the system but is vital during development as it allows the original video 
to be re-processed using the latest software improvements.  

• Another 18% of processing time was spent waiting for user interaction (checking for user
keystrokes, etc.). No opportunities for efficiency improvements were identified for this
necessary step.

• Initial versions of the algorithm ran on a single CPU core and sequentially processed each
frame of video, creating bottlenecks in the archiving, screen display, and user interaction
steps.  

The detection software was redesigned to take advantage of multiple CPU cores, allowing separate 
processes to handle motion detection, alarming, video archiving, etc., and improving the overall 
speed and efficiency of the software. A comparison between the sequential and multiprocessing 
versions of the software was performed in October 2023, using two example videos (one showing a 
human-induced single rockfall and one showing a 12-minute video of secondary rockfall following 
the Leo failure event at Bingham Canyon Mine on May 31, 2021). Both source videos were recorded 
at 15 frames per second, and both were tested using the development laptop’s Intel i9-12900H 
processor. Comparison results are outlined below: 

• Processing the human-induced rockfall test video with 668 frames:

o The sequential algorithm finished in 26 seconds (25.7 FPS)

o The multiprocessing algorithm finished in 11 seconds (60.7 FPS)

• Processing the post-Leo failure video with 10,982 frames:

o The previous sequential algorithm finished in 438 seconds (25.1 FPS)

o The new multiprocessing algorithm finished in 162 seconds (67.8 FPS)
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Detection results were identical between the two algorithm versions on each example video, 
indicating that the increase in speed did not cause any loss in effectiveness. The shorter video 
processing speed was improved by a factor of 2.3×, while the longer video processing was improved 
by a factor of 2.7×. This outcome reflects the cumulative effects of bottlenecks in sequential 
processing that become more pronounced on longer inputs. 

Testing with the improved software solution running on the prototype tactical system’s hardware was 
completed between January and March 2024. This testing involved real-time processing on live video 
from three minutes up to 11 hours. The first successful live testing of the multiprocessing algorithm’s 
output on human-initiated rockfall was done at the University of Arizona San Xavier Mining Laboratory 
site on January 26. Six human-initiated rockfall events were recorded during this test. The algorithm 
was able to run in real time, processing rockfall detection/tracking and producing two video output 
streams (original unprocessed video and detection results video). The original video recording 
allowed for masking and re-running the algorithm after returning from the site (also on the same 
hardware). Observations from this test included: 

• The unmasked algorithm output detected 5 of 6 human-initiated rockfalls, as well as multiple 
non-rockfall events caused by moving vegetation. 

• After masking vegetation patches and regions outside of the slope the algorithm successfully 
identified all 6 human-initiated rockfall events and no false positive events. 

• Both the masked and non-masked output registered and tracked secondary motion of rocks 
dislodged by the thrown rocks. Two of these events occurred during the test, and each was 
correctly identified as rockfall by both runs of the algorithm. 

o The unmasked test misidentified these secondary rockfalls as new rockfall events or 
associated them with vegetation-induced false positive events. 

o The masked algorithm test correctly associated the secondary rockfalls with their 
initiating “parent” rockfall events. 

All field tests showed successful real-time motion processing with simultaneous archiving of video, 
indicating successful resolution of the lag issue discovered in Testing Phase 2.   

4.4 Alarming, Recording, and Georeferencing 
To be useful for improving personnel safety and slope stability awareness, the rockfall tracking 
algorithm must include methods to alert for and record tracked hazardous fall events. As seen in 
Figures 4-1 and 4-2 in Section 4.2, one such alerting method is visual. The algorithm can also 
generate audio alerts. Textual records are written to external files for future analysis, and the 
algorithm can also store visual results of rockfall tracking or copies of the original video feed. 
Georeferencing can also be performed to link 2D locations of rockfall with 3D points on an existing 
map of mine sites. Taken together, these features provide a framework for accurate, repeatable, and 
verifiable location of detected rockfall events. 

4.4.1 Alarming for Hazardous Fall Events 
Video alerting. As rockfall events are detected, the algorithm displays a visible track of motion on 
screen. These tracks are separately identified and are individually colored to distinguish separate 
events that are simultaneously visible or even simultaneously occurring. Figure 4-4 depicts the 
results of the automated rockfall detection algorithm on several human-initiated rockfall events at 
the SX Mine. Note that some colors are used in multiple movement tracks. This is due to two of the 
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falling rocks dislodging other material, which moves and is tracked separately but still associated 
temporally and spatially as the same event. 

Figure 4-4. Still image depicting multiple rockfall traces from a test of the prototype tactical system at the SX Mine. Each 
color overlaying the grayscale background indicates a separate fall event (some of which include a secondary fall 
representing dislodged material). Line thickness varies based on the amount of moving material observed. 

Audio alerting. The automated rockfall detection program can currently generate audio alerts if 
running on a Windows-based computer system. The default audio alert is a Windows system error 
sound, and repeats every 0.5 seconds while an active fall event is being tracked. 

4.4.2 Recording for Further Analysis 
The automated detection software offers multiple options for recording rockfall events. Such 
recordings can be used for archival purposes, reprocessing, or for export as data in other analyses. 

Recording of rockfall video. The visual rockfall detection results can be written to  a video file for  
record keeping or further analysis. Video output options include a single frame with a real-time 
overlay of tracked falling object paths or a three-frame side-by-side video showing original video feed, 
motion detection results, and tracked falling object paths (allowing easy visualization of why certain 
movements were classified as hazardous falling objects). Each subframe has the same resolution as 
the original video, for an overall output size with the same vertical resolution and three times the 
horizontal resolution as the input source. 

Recording of original video feed. The unprocessed video input received by the algorithm can be 
separately saved to an archival video file. This allows for reprocessing the video with future, improved 
versions of the detection software. 

Output to text files. The algorithm can write data to external text files (in plain text or comma-
separated-value format) for use in record keeping and later analysis. Such textual records (including 
each detected event’s time of initiation, its starting location, the video file source of the event, and 
the frame number of the event initiation) were used in the comparison between human and algorithm 
rockfall detection (Section 4.5) and in the empirical correlation portion of the project (Section 6). 
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4.4.3 Georeferencing 
To enable more advanced alarming, a workflow for georeferencing fall events has been developed. 
This is used to provide site operators with three-dimensional coordinates that match their site 
positioning scheme, allowing for rapid delineation and communication of areas experiencing rockfall 
hazards. The Georeferencing workflow developed for this project requires the input of a 3D map such 
as those frequently generated by on-site survey teams for operations and planning. The initial setup 
for georeferencing is a multi-stage process and must be repeated occasionally as progressive mining 
alters the mine topography. The result is an efficient algorithmic process involving matching 2D 
screen locations of movement with a table containing the corresponding 3D georeferenced 
coordinates. 

Outline of georeferencing process. The following stages are used in the georeferencing workflow: 

1. Camera calibration: The thermal camera’s intrinsic parameters are determined using a
calibration grid tool which measures field of view, focal length, and linear distortion
characteristics of the individual camera lens (Figure 4-5). The manufacturer camera
specifications are insufficient for this determination because of potential inconsistencies
or flaws in the camera lens production. This can lead to subtle image distortions that affect
the 2D to 3D georeferencing calculations, with the error increasing as a function of the
distance between the camera and the slope.

Figure 4-5. Thermal camera lens calibration device as viewed by the FLIR A400 camera: This device consists of a 16-
gauge steel plate with a precise vinyl checkerboard pattern overlaying part of the surface. The thermal contrast between 
vinyl and exposed steel allows the thermal images to be used in standard calibration tools designed for visible-light 
cameras. 

2. 3D mine representation: A digital rendering of the mine site or area of interest is generated
by drone photogrammetry, LiDAR scan, or other technology and saved as a point cloud. This
can be viewed in 3D software such as CloudCompare (Figure 4-6). The location coordinates
of the 3D mine representation will often be received in the site grid coordinate system with
an offset applied (in CloudCompare or other software) to center the model on screen. This
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offset must be noted, since it will be applied to 3D location values later in the process to 
ensure that the georeferencing output matches site grid coordinates. 

Figure 4-6. 3D point cloud collected from Mine 7, viewed in CloudCompare (top-down view). 

3. DEM export and conversion: Using export options in 3D software such as QGIS, Pix4D, or 
CloudCompare, the 3D point cloud is viewed orthographically from above, converted into 
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elevation data, and exported as a grayscale TIFF or PNG image (Figure 4-7) or as a table of 
values representing the elevation of each point in the file. 

Figure 4-7. Grayscale heightmap generated from Mine 7 point cloud (lighter areas correspond to higher elevations). 

4. Heightmap import to Unity: Either output from step 3 can be imported into Unity, a popular
3D development platform, and used to create a virtual duplicate of the slope face (Figure 4-
8)

Figure 4-8. 3D model of Mine 7 pit slope generated in Unity from a digital elevation map (DEM) file 
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5. Camera placement in Unity: The unity camera is set at the same location
(distance/elevation) relative to the target slope as the real-world camera at the deployment
site (determined from the 3D point cloud and site reporting).

6. Per-pixel ray tracing: The Unity camera’s view is set to the same resolution as the deployed
thermal camera. Using raytracing techniques, a line is sent from the Unity camera’s focal
point through each resulting pixel and evaluated to determine whether (and where) that ray
impacts the scene (Figure 4-9).

Figure 4-9. Raytracing for 2D to 3D correlation. A virtual camera is positioned in Unity to match the relative placement 
of a real-world thermal camera (placement shown by the yellow camera, with a field of view outlined in white). The 
camera generates a 2D image of the mine slope (shown as the rectangular inset image). A vector (or ray, shown as a 
thick orange line) is drawn from the virtual camera location through the 2D coordinate (x,y) at the camera’s focus 
length and extends until it intersects the 3D slope model. The 3D location of the ray/slope intersect (x’,y’,z) is 
recorded. 

7. Accounting for nonlinear distortion: A preliminary method of maintaining accuracy in cases
of nonlinear (fisheye) lens distortion has been developed, using the distortion parameters
provided by camera calibration in step 1 to adjust the direction of each ray cast in step 6.
This distortion correction is still being tested at the end of the project period.   

8. Generation of 2D to 3D projection map: The 3D location of each ray’s intersection is output
to a comma-separated values (CSV) file arranged by position of the original camera pixel.

9. Translation of 3D coordinates to mine grid: The CSV file resulting from the previous step
contains Unity coordinates (accurate spatial coordinates from an arbitrary 3D origin point)
rather than real-world locations. These must be translated to the mine grid used on site by
adding the offset noted in step 2.

10. Export of projection map to rockfall tracking software: The finalized map of 3D equivalents
for each pixel is imported to the rockfall detection algorithm as a two-dimensional array.

11. Dual 2D/3D outputs: In a method parallel to that used in masking regions of noninterest, the
screen location of each tracked rockfall is compared to the imported 2D to 3D map, and
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both screen coordinates and the corresponding real-world location are output by the 
algorithm. 

Caveats for the georeferencing process. This georeferencing workflow uses a periodically 
generated 3D representation of the mine in order to locate real-world coordinates corresponding to 
2D screen coordinates of motion detection. Due to this, the positional accuracy of the rockfall 
tracking algorithm’s 3D output is directly dependent on the frequency of 3D updates from new 
photogrammetry/lidar/other surveys of the site. Additionally, the current method of accounting for 
nonlinear distortion due to lens curvature (the “fisheye” effect, which is likely to increase with wider 
camera field of view) is still being tested for accuracy. Finally, many mines use site-specific 
coordinate systems rather than longitude/latitude, UTM, or WGS84. The initial calculations of 3D 
coordinates from Unity to the Mine grid can be time consuming if the 3D representation of the mine 
received from the site is not a point cloud already calibrated to the site grid. 

4.5 Research Findings and Future Work 
Early versions of the rockfall detection algorithm were developed on significantly faster computers 
than the prototype tactical system’s laptop and were tested using archived video rather than live 
rockfall events. The lag between real-time events and detection results in Testing Phase 2 highlighted 
the need for an algorithmic solution that was developed to perform well on slower hardware. Some 
initial assumptions of necessary features (such as automatic motion stabilization to counteract 
camera shake) were found to be non-critical during testing. 

Comparisons to Human Rockfall Detection. The GCE’s thermal video archives include recordings 
capturing the Leo slope failure at Bingham canyon mine as well as several days prior (acquired during 
Phase 1). This video was used in multiple papers (Wellman et al. 2022, Schafer et al. 2024) to 
demonstrate an increasing frequency of rockfall events prior to a major slope failure. Prior research 
using this video relied on manual selection of rockfall events. In May 2024, the automated rockfall 
detection algorithm was used to process the same video. A plot of the cumulative rockfall events 
observed by manual selection and automated detection is included in Figure 4-10. A comparison of 
detection locations for human and algorithmic rockfall detection is shown in Figure 4-10. The 
comparison reveals similar cumulative frequency curves between human and automated rockfall 
detections, although human observers found instances of rockfall not detected by the algorithm and 
vice versa.   

Events that were not detected by the algorithm were primarily short rockfall located near the western 
edge of the failure (the right portion of the image shown in Figure 4-10). Evaluation of these events 
revealed that the rockfalls in this region demonstrated low visual contrast and had overall movement 
distances below the minimum distance parameter used during video processing, implying that 
results could be improved through more careful calibration of the algorithm parameters for the site. 
These differences account for the shallower rockfall frequency acceleration in algorithm detections 
versus human detections from mid-day on May 30, 2021, until the time of failure on May 31, 2021. 
The algorithm also detected events that were not detected by the human observer. Some of these 
were due to the algorithm’s ability to track multiple motions and evaluate the entire camera view in 
each frame. Notably, there was a sudden increase in detections by the algorithm at mid-day on May 
29, 2021, when a planned blast resulted in multiple rockfalls from the explosive force. The human 
observer recognized the rockfalls as occurring due to human action rather than part of the natural 
slope failure, so discounted these movements. The algorithm recognized objects falling in a 
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hazardous manner, so included these events in the count. Both evaluation methods show an 
exponential increase in rockfall frequency prior to the failure, confirming the results of Shafer et al. 
(2023) and Wellman et al. (2022).   

Figure 4-10. Comparison of human-detected and automatically detected rockfall. (left) Cumulative rockfalls logged by 
human observer (red) versus automated rockfall detection algorithm (blue) leading up to the Leo failure at Bingham 
Canyon Mine, Utah on May 31, 2021. Modified from Schafer et al. 2023. (right) Locations of rockfall events detected by 
human observers (red squares) and the automated rockfall detection algorithm (blue circles) over the five days prior to 
the Leo failure at Bingham Canyon Mine in Utah. Modified from Schafer et al. 2023. 

The prototype software establishes the groundwork for development of a commercially viable 
software system for detecting, tracking, and alarming for rockfall. Further developments will focus 
on gathering feedback from industry focus groups, incorporating research findings regarding 
complementary technologies and additional geotechnical applications, and designing a front-end 
interface for deployment across various operating systems to align with diverse user hardware 
preferences. The tracking algorithm will undergo continuous updates to enhance software 
efficiencies and remain aligned with advancements in hardware computing capabilities. The 
determination of appropriate site-specific algorithm parameters (vectors for motion heuristics and 
sensitivity thresholds appropriate for separating true movement from background noise) will be 
improved. Where digital elevation models are available, the expected angle of rockfall will be 
automatically calculated based on three-dimensional topographic data and each pixel will be 
georeferenced with a 3D coordinate, resulting in more accurate tracking and alarming of rockfall 
events. Future work on the algorithm will also include options for discounting detections during times 
of heavy precipitation or planned blast events to allow isolation of the relation between rockfall and 
the underlying slope movement. The Unity game engine used in the georeferencing component of the 
algorithm is capable of significantly higher accuracy than the single location per pixel used in the 
current 2D to 3D workflow. By comparing brightness levels of multiple pixels at the point of motion, 
a weighted balance between two pixels could be computed and then used to calculate a ray for 
locating the true source of motion with sub-pixel accuracy. 

Comparison with Machine Learning Techniques. Ongoing research efforts also include attempts 
to apply machine learning with the expanded data set provided by the algorithm testing to detect 
rockfall from thermal video data. The results of this study will be compared to the current heuristic-
based algorithm in terms of both accuracy and processing requirements. This comparative analysis 
will be used to identify which approach is most effective for real-time rockfall detection. 
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5 Rockfall Monitoring System Developments and 
Upgrades 

Two platforms for gathering thermal video data were utilized during Phase 2. The first is the Mobile 
Monitoring Platform, a trailer with three externallymounted thermal cameras and one bispectral 
(visual and thermal) pan/tilt/zoom camera, which was built during Phase 1 and continues to be 
deployed to mine sites during Phase 2 to gather additional video for use in algorithm development, 
rockfall library expansion, and video quality analysis. This system is useful for extended deployments 
(gathering data over the course of weeks or months with minimal human interaction). The second 
platform is a prototype tactical monitoring system with self-contained power, network, and 
computing resources. This system is meant to be deployable on short notice to provide real-time 
alarming for personnel working under potentially hazardous slopes. 

5.1 Mobile Monitoring Platform 
During project Phase 1, a mobile monitoring platform (MMP) was designed and constructed in 
collaboration with IDS GeoRadar to evaluate the effectiveness of detecting rockfall from thermal 
video. The MMP was designed to transport the cameras and associated equipment to various mines 
and project sites, manage thermal video recording and archiving, and monitor camera performance 
and video output quality. The system includes the mechanical, power, communications, computing, 
and recording components necessary for deployment and comparative evaluation of up to four 
thermal cameras. Several upgrades were made as part of project Phase 2, Aim 3 to allow for 
continued data collection with the MMP. The original hardware components of the MMP and 
associated upgrades are detailed in Table 5-1.  All cameras trialed as part of this project are 
summarized in Table 5-2. 

Table 5-1. MMP Components and Associated Upgrades 
Component Notes Upgrades Made During Phase 2 

Trailer 
Manufactured by Aluminum Trailer 
Company Trailers and modified by IDS 
GeoRadar 

An improved 20,000 lb. trailer coupler was 
added after the original coupler pin began to 
warp. 

Inverters 2x 250VA Victron inverters 
The inverters were upgraded to 
accommodate power requirements for 
upgraded equipment. 

Battery array 
8x deep cycle 12-volt marine batteries 
(Full River Battery Co) enclosed in 
Quickbox housings 

All batteries were replaced. 

Solar panels 
6x Q.PEAK DUO-G5 315-330 solar 
panels – 3x affixed to the MMP roof, 3x 
ground deployable 

N/A 

Charge 
controller 

Outback Power Flex Max 80 Charge 
Controller 

The charge controller was replaced due to 
power issues experienced in Phase 2. 

Battery 
charger DeltaQ IC 1200W charger N/A 

Cellular 
connectivity 

Sierra Wireless RV50 modem; 
Proxicast antenna N/A 

Satellite 
connectivity Starlink High Performance receiver This is new equipment added in Phase 2 
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Component Notes Upgrades Made During Phase 2 

Ethernet Wired WAN port to connect to site 
networks 

N/A 

Video 
recording 

FLIR Meridian Net Video Recorder 
(NVR) 

Replaced with a ThinkStation P3 Tiny 
Workstation with a faster CPU and more 
memory.  

Extra video 
storage 5TB Seagate portable hard drive 

A 22Tb external hard drive system was 
added to provide adequate data storage for 
longer-term deployments.  

Control 
System 

FLEXSQ5 Supervisory Control and 
Data Acquisition (SCADA) N/A 

Solar 
Irradiance IMT Solar irradiance sensor Si-V-10TC N/A 

Temperature 2x thermistors – 1x external, 1x internal N/A 

Rain Gauge Rainwise Tipping Bucket Rain Gauge 
111-PVMet 500

It was observed that the anemometer was 
interfering with the accuracy of rain gauge 
measurements. The devices were separated 
to address this problem.  Anemometer TheisClima Anemometer 

Table 5-2. Thermal Cameras Deployed on the MMP 

Camera Model Thermal Field 
of View 

Thermal 
Resolution (native) 

Radiometric 
output1 Phase 1 Phase 2 

FLIR A400 14° × 10° 320×240 Yes Yes No2 
FLIR A700 42° × 32° 640×480 Yes No Yes 
FLIR FC-632-ID 32° × 26° 640×480 No Yes Yes 
AXIS Q1941-e 6.2° × 4.6° 384×2883 No Yes No4 
AXIS Q8752-e5 17° × 12.8° 640×480 No Yes Yes 

5.2 Development of a Prototype Tactical Rockfall Monitoring System 
To facilitate deployment and scalability, a prototype tactical monitoring system was developed. The 
system is a mobile, tactical rockfall detection solution designed for algorithm testing and on-site 
data collection. The system was manufactured by GroundProbe at their facility in Tucson, Arizona, 
under the guidance of the GCE, which outlined the necessary system requirements and provided 
feedback throughout the design process. Among its key capabilities, the system was designed to be 
transported in a pickup truck or other light vehicle and installed in less than one hour by a single 
person. Figure 5-1 shows the prototype system deployed at a mine in northern Nevada. 

1 Can provide temperature data for every pixel in the camera’s field2 Replaced with FLIR A700 scientific thermal 
camera for Phase 2 
2 Replaced with FLIR A700 scientific thermal camera for Phase 2 
3 EPective recorded resolution: 320×2404 Removed from MMP for most of Phase 2 due to problems with high 
video compression producing too much noise for rockfall identification 
4 Removed from MMP for most of Phase 2 due to problems with high video compression producing too much 
noise for rockfall identification 
5 Includes pan-tilt functionality and a visible-light camera 
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5.2.1 Technical Specifications 
The FLIR FC-632-ID camera serves as the 
system’s imaging component. This is a 
security-grade thermal camera with a 
relatively accessible price point (around 
$8,000 as of this writing) as well as the ability 
to output high bitrate (low compression) 
video. The camera features a 32° horizontal 
field of view, resolution of 640 × 480 pixels, 
and a maximum framerate of 30 frames per 
second. Its uncooled vanadium oxide 
microbolometer provides consistent 
performance with less need for 
maintenance than more expensive cooled 
thermal detectors. The camera has an 
operating temperature range of –50 °C to 
70°C (–58 °F to 158 °F). 

The system was designed such that other thermal cameras can be utilized with an appropriate 
mount. This flexibility allows for customization based on specific project requirements or 
advancements in thermal imaging technology. The computing component of the prototype system is 

a Dell Latitude 5424 Rugged Laptop, which 
was selected for its robust construction and 
reliability. Equipped with an Intel i7-8650U 
processor, 16 GB of RAM, and 1TB NVMe 
Storage, it oers adequate performance for 
data collection and storage. The laptop is 
housed in a rugged case along with an 
additional 256 Wh rechargeable LiPO4
battery which allows for approximately 5 
hours of continuous operation in areas 

lacking reliable line power. The unit can also accept 120V AC power to facilitate prolonged 
deployment. Power-over-Ethernet (PoE) connectivity streamlines the integration of imaging and 
computing components. Figure 5-2 shows the processing, battery, and PoE components of the 
system. 

The prototype system has two tripod options (Figure 5-3): 

1. Tripod 1: A heavy-duty fixed-height metal tripod designed for long-term deployments in
rugged environments.

2. Tripod 2: A lightweight and adjustable surveyor’s tripod that can be easily adjusted to meet
the needs and characteristics of a worksite for short-term, tactical deployments.

Figure 5-1. Prototype tactical monitoring system deployed with 
Tripod 2 at a mine in Nevada. 

Figure 5-2. The prototype system processing unit (left) and PoE 
injection system (right). 
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5.2.2 Design Considerations for Extreme Environments 
The prototype system was engineered to withstand the conditions prevalent in mining environments, 
while ensuring operational eiciency and adaptability. All system components are enclosed with 
robust weatherproof storage boxes, engineered to endure extreme environmental conditions. These 
enclosures provide protection against heavy precipitation, snow, temperatures from –30 degrees to 
130 degrees Fahrenheit, dust ingress, and wind speeds exceeding 80 miles per hour. The FLIR FC-
632-ID camera is rated IP66 and IP67 (dust-tight and capable of withstanding powerful water jets or
submersion in 1 meter of water for periods of 30 minutes). The processing unit, battery components,
and power system are housed in Pelican cases with all internal components secured in place.
Additionally, all connecting cables between the components (not including the alternating current
power cable for line charging) feature rugged, weatherproof sheathing, cable glands between cable
and connector, and rubber gaskets used as pressure seals for the connectors. The AC power
connector from the processing unit case uses a gasketed insert to prevent water and dust intrusion
when not in use.

5.2.3 System Installation, Transport, and Portability 
Setup of the system’s physical and software components can be completed in approximately five 
minutes when using default settings. However, software setup time varies by the amount of tailoring 
(e.g., region masking, fall angle definition, etc.) necessary for the site conditions. The prototype 

Figure 5-3. Prototype tactical system tripod options: (left) heavy-duty tripod option, shown with prototype 
system camera, processing unit, and PoE system in an office environment; (right) lightweight tripod option, 
shown with thermal camera (remainder of standalone system not visible), shown during a deployment test. 
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system was designed to be lightweight enough that it could be transported to an observation site and 
installed by a single person on foot. This can be achieved when deployed with Tripod 2. Deployment 
with the more rugged Tripod 1 requires transport with a light vehicle. The weight of each system 
component and of the resulting total system with different tripod configurations are approximated in 
Table 5-3. Long-distance transport of the unit requires ground shipping using hazardous materials 
labeling due to the size of the battery, which exceeds FAA guidelines for lithium batteries on domestic 
flights. 

Table 5-3. Approximate Weight of Prototype System Components 
Component Weight (kg) 
Processing Unit 17 
Power-over-Ethernet System 4 
Camera and Case 4 
Cables <1 
Tripod 1 20 
Tripod 2 7 

Total Weight with Tripod 1 45 
Total Weight with Tripod 2 33 

5.2.4 Issues Encountered   
While deployed at a Nevada mine during Testing Phase 1 (Section 3.3.2), the power components of 
the prototype system experienced an unexplained failure which ended data collection earlier than 
anticipated. The system was transported to GroundProbe’s Tucson facility for troubleshooting, where 
the issue (a faulty charge controller) was identified and addressed. However, concerns regarding the 
reliability of the power system persisted due to intermittent outages during subsequent 
deployments. Future deployments were limited to mines within driving distance of UArizona to allow 
for more efficient troubleshooting. 

5.3 Future Work 
The two prototype data acquisition systems provided valuable insights that will inform future system 
builds. Building upon experience gained in Phase 2, future work will include enhancing the tactical 
system for tactical monitoring in safety-critical areas when rapid data generation and alarming are 
needed (e.g., personnel working in high rockfall risk areas). Considerations and anticipated future 
work needed to meet this goal include: 

• Incorporating alternate computing infrastructure options to better meet the demands of
simultaneous data processing and storage. Strategies include using more powerful and
efficient embedded computing systems, such as NVIDIA’s Jetson series of high-performance
GPUs.

• Exploring an alternate power system design with increased reliability which meets all
applicable requirements for domestic air travel in the US.

• Exploring more compact solutions such as an all-in-one, wheeled and weatherproof casing.
The cameras tested with the Version 0 prototype use a PoE interface that required a local
ethernet network with a power-injection solution. This prototype currently has separate
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cases for the PoE network, computing/battery unit, and camera. The inter-case cabling and 
tripod must be carried separately from these three cases. While the entire system can be 
carried by a single person, a more consolidated solution would increase ease of deployment.   
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6 Rockfall Forecasting based on Empirical Correlations 
and Statistical Modeling 

This section documents efforts to model empirical relationships between the GCE’s rockfall and 
meteorological data sets in furtherance of rockfall event forecasting. The aim of this work is to 
establish relationships between environmental forces and rockfall events to assist geotechnical 
engineers in developing weather-related trigger action response plans for rockfall. It is well 
documented that meteorological cycles and events impact slope stability, affecting both natural and 
engineered slopes (Robinson et al., 2017; Sidle, 2007; Beale & Read, 2013). However, existing rockfall 
frequency data sets lack the temporal resolution for assessment at timescales that are relevant to 
mining operations. Preliminary interpretations of meteorological impacts on rockfalls detected using 
thermal cameras were made during project Phase 1 (Wellman et al., 2022). The analysis documented 
here builds on the Phase 1 interpretations by employing statistical methods on rockfall and 
meteorological data optimized for assessing these relationships. Rockfall data sets were generated 
using the GCE’s rockfall detection algorithm presented in Section 4 on archived thermal video 
collected during Phase 1 deployments. These data were evaluated with concurrent on-site weather 
data using logistic regression to quantify the relationship between the various meteorological factors 
and rockfall initiation.   

Previous studies, such as Nissen et al. (2022) and D’Amato et al. (2016), have utilized logistic 
regression for correlating rockfall observations on natural slopes with meteorological forces. 
However, the rockfall datasets analyzed in these studies differ significantly from the algorithmically 
generated data evaluated here. Data analyzed in previous studies include historical rockfall accounts 
and public records going back 200 years (Nissen et al., 2022), and periodic LiDAR scanning coupled 
with high-resolution photography collected over several years (D’Amato et al., 2016). The findings of 
these studies vary, however both D’Amato et al. (2016) and Nissen et al. (2022) concluded that 
precipitation appears to have a first-order effect on rockfall initiation. D’Amato et al. further 
concluded that thermal ice dilation during the thawing side of a freeze thaw cycle significantly 
contributed to rockfall initiation. Complimenting this, a study by Nigrelli et al. (2022) utilized in-situ 
monitoring to measure rock mass temperature, finding that solar irradiance may have a strong 
influence on the heating of bare rock surfaces more so than external air temperature, which may 
further influence instabilities (Nigrelli et al., 2022). Additionally, Macciotta (2019) conducted a meta-
analysis of studies and methods for correlating environmental forces with rockfall, concluding that 
adopting a probabilistic approach to quantifying rockfall may be the next step in predicting a 
seemingly random natural process. 

The relatively low temporal resolution of the data sets used in these previous studies limited the 
researcher’s correlation analyses to the scale of months or years, which is insufficient for the 
purpose of predicting rockfall based on real-time or forecasted meteorological events. In contrast, 
the data presented in this study contain continuous time series of rockfall data down to the hour 
scale, providing a significant advantage for evaluating these correlations at sub-24-hour timescales, 
which are most relevant to active mining operations.   

6.1 Data Collection and Collation 
Two mines were investigated in this analysis, a steelmaking coal mine in British Columbia, Canada 
(Mine 7), and a copper porphyry mine in Arizona (Mine 8). The climates at these sites provided a 
unique opportunity to evaluate the influence of freeze-thaw cycles, precipitation, and solar 
irradiance on rockfall. Data collected at Mines 7 and 8 includes thermal video recordings from the 
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FLIR FC-632-ID and meteorological data from the MMP FlexScada recording unit, as well as near- or 
on-site weather stations. Meteorological data considered in this analysis includes temperature, 
precipitation, solar irradiance, and wind. The MMP was deployed at Mine 7 between January 27th and 
April 13th , 2022. Mine 7 was selected to evaluate the impact of freeze-thaw cycles on rockfall 
occurrence. The Mine 8 data set was recorded between June 21st and September 13th , 2022. Mine 8 
was selected to analyze the impact of extreme heating cycles and heavy rainfall. Summary statistics 
for meteorological parameters considered are provided for Mine 7 and 8 in Tables 6-1 and 6-2. This 
information is presented in graph form in Appendix B.4. 

Table 6-1. Summary of Mine 7 Meteorological Data 
Temperature (C) Precipitation (mm) Wind (M/S) Solar Irradiance (W/m2) 

Min -29.87 0.00 0.00 0.18 
Max 14.77 16.49 7.92 1045.47 
Ave -6.10 0.99 1.09 118.73 

Total - 76.29 - - 

Table 6-2. Summary of Mine 8 Meteorological Data 
Temp (C) Precipitation (mm) Wind (M/S) Solar Irradiance (W/m2) 

Min 16.54 0.00 0.00 0.00 
Max 46.38 29.08 5.40 1441.18 
Ave 29.94 0.17 0.49 250.74 

Total - 334.34 - - 

6.1.1 Rockfall Data Collection and Collation 
Rockfall data sets were generated from the archived thermal video for both Mine 7 and 8 
deployments. The videos were processed using the GCE’s rockfall detection algorithm presented in 
Section 4, resulting in near-continuous records of rockfall detection data when the thermal video 
feed was not obscured by extreme weather events. Algorithm parameters that dictate the sensitivity 
of rockfall detection were tailored for each site to minimize false positive detections. Additionally, 
areas outside of the slope of interest were masked by removing video frame coordinates from the 
algorithm input to ensure non-rockfall motion (e.g. mining operations) were not captured as false 
detections. The resulting data set consists of timestamp, pixel location, source filename, and frame 
number values associated with the initiation of movements classified as rockfall. The algorithm 
output was converted to a categorical (binary) hour-scale time series in which rockfall versus no 
rockfall is denoted. Daily rockfall data for Mine 7 and Mine 8 are summarized in Table 6-3 and Figures 
6-1 and 6-2, respectively.   

Table 6-3. Summary of Daily Rockfall Events by Mine Site 
Maximum Minimum Average Daily Rockfall over Deployment 

Mine 7 Quantity 1635 9 257 
Date 7-Apr 13-Apr - 

Mine 8 Quantity 300 1 47 
Date 21-Aug 7-Jul - 
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Figure 6-1. Time series representing the daily sum of detected Rockfall Initiations at Mine 7. Periods during which 
the slope was obscured by extreme weather events are represented by vertical grey bars. 

Figure 6-2. Time series representing the daily sum of detected Rockfall Initiations at Mine 8. No periods of slope 
obscurity occurred during this deployment. 
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6.1.2 Meteorological Data   
Meteorological parameters collected during the Phase 1 deployments to Mines 7 and 8 included 
solar irradiance (W/m2), temperature (℃), precipitation (mm), and wind speed (m/s). More details 
about how and why these data sets were incorporated into the analysis are provided in the following 
subsections. 

6.1.2.1 Temperature 
Temperature was gathered via a temperature sensor set on the outside of the MMP to gather 
external temperatures. Temperature was sampled every minute over the course of the deployment 
and converted to an hour-scale time series representing the average over the hour. Past work by 
D’Amato suggests that temperature influences rockfall through the expansion and contraction of 
pore- and fracture-bound water (D’Amato et al., 2016). Additionally, thermal expansion of the 
overall rock mass has potential for initiating rockfall. As temperature was gathered during 
deployment, this meteorological parameter was a natural candidate for testing influence on 
rockfall. To further track the phase change and quantify the freezing of liquid water at Mine 7, 
freezing potential is calculated. 

Freezing potential. Freezing potential can be considered a proxy for potential for ice growth 
(D’Amato et al., 2016) and is a measure of the temperature relative to the freezing point and the length 
of time over which temperature was below freezing. Positive freezing occurs when temperatures are 
below the freezing point and actively dropping, while negative freezing occurs when temperatures 
are below the freezing point but rising. As rising temperature approaches the freezing point, freezing 
potential approaches zero until the freezing point is surpassed and freezing halts. This is a cyclical 
process during each freeze-thaw cycle and has units of temperature*time (Figure 6-3). D’Amato et 
al. found that decreasing freezing potential was correlated with the cessation of ice growth, which 
was thought to result in the detachment of rocks previously bound by ice to their surrounding rock 
mass. Conversely, increasing freezing potential could serve to increase rock stability by stimulating 
ice growth, creating cohesive ice bonds between rocks. Equation 1 provides the integration needed 
to perform this calculation, where 𝑡𝑡0 is time when temperatures dropped below freezing and 𝑡𝑡 is the 
time of calculation. 𝑇𝑇𝑓𝑓 is the temperature at which water freezes while 𝑇𝑇(𝑡𝑡) represents the 
temperature at the time of calculation. Freezing potential was only calculated for Mine 7 as Mine 8 
did not experience freeze-thaw cycles. 

Equation 1: Freezing Potential 

𝐹𝐹𝐹𝐹 = � (𝑇𝑇𝑓𝑓 − 𝑇𝑇(𝑡𝑡))𝑑𝑑𝑡𝑡 
𝑡𝑡 

𝑡𝑡0
, 𝑇𝑇(𝑡𝑡) < 0 
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6.1.2.2 Precipitation 
Precipitation was sampled on five-minute intervals and then converted to an hour-scale time series 
representing the total precipitation recorded during each hour. To quantify the degree to which the 
rock mass is inundated with water or ice, the data was further delineated into two additional 
parameters: 24-hour precipitation and precipitation intensity. 

24-hour Precipitation. The 24-hour precipitation represents the rolling sum of the total per-hour
precipitation for the previous 24-hours.  

Precipitation Intensity. Precipitation intensity is the average amount of precipitation per hour for a 
given storm or precipitation event. To calculate precipitation intensity, an appropriate Inter-Event 
Time Definition (IETD) must first be determined. IETD defines the minimum amount of time that must 
pass between precipitation events for a new event to be considered separate from previous events. 
Restrepo-Posada & Eagleson (1982) found that the inter-event periods for a given dataset will form 
an exponential distribution when filtered by an appropriate IETD. In other words, when the inter-event 
time periods are filtered such that they meet or exceed the IETD, the coefficient of variation (CV) of 
the inter-event time periods dataset will equal one (the mean of the data set will equal the standard 
deviation). This means that all rainfall between these inter-event periods are considered one 
precipitation event or storm. To determine the appropriate IETD for the Mine 7 and Mine 8 
precipitation datasets, IETD values between one- and 24-hours were plotted against their associated 
coefficients of variation. Figures 6-4 and 6-5 show that the appropriate IETDs (where CV=1) for Mines 
7 and 8 were determined to be 5.9 hours and 1.7 hours, respectively.   

Using these IETDs, the precipitation dataset can be grouped into distinct events. The precipitation 
events identified for the Mine 7 and 8 datasets are presented in Figures 6-6 and 6-7 and in Appendix 

Figure 6-3. Timeseries showing freezing potential during Mine 7 deployment. Grey bars represent time periods for which 
the slope was obscured by heavy fog, rain, or snow. 
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B.1. Mine 7 experienced 30 distinct precipitation events while Mine 8 experienced 20. On average the 
precipitation events at Mine 8 were more than seven times as intense as the precipitation events at
Mine 7. This is to be expected as precipitation at Mine 8 was recorded in Arizona during monsoon
season, which is known for heavy precipitation over short periods. Additionally, Mine 7 precipitation
includes both frozen and liquid precipitation, while Mine 8 includes only liquid precipitation, due to
temperatures fluctuating around the freezing point at Mine 7, and temperatures staying above
freezing at Mine 8.

6.1.2.3 Solar Irradiance 
Solar irradiance was sampled every minute over the course of the deployment and converted to an 
hour-scale time series representing the average over the hour. Solar irradiance is the electromagnetic 
radiation emitted by the sun, measured over the area of exposure. As suggested by Nigrelli et al. 
(2022), solar irradiation can heat the surface of the rock mass to temperatures well above the static 
air temperature. This difference in temperature shows that solar irradiance is a strong driver of rock 
mass thermal heating outside of external temperature and may serve as a metric for thermal rock 
mass expansion, leading to rockfall. 

6.1.2.4 Wind 
Wind speed was sampled every minute over the course of the deployment via the MMP’s onboard 
anemometer and converted to an hour-scale time series representing the average wind speed per 
hour. While no predetermined conclusions about wind causing rockfall are presented in this analysis, 
wind was included to test the possibility of an empirical relation with rockfall initiation.   
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Figure 6-4. Coefficient of Variation vs Inter-Event Time Definition – Mine 7 

Figure 6-5. Coefficient of Variation vs Inter-Event Time Definition – Mine 8 
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Figure 6-6. Precipitation intensity for all precipitation events observed during Mine 7 deployment. 

Figure 6-7. Precipitation intensity for all precipitation events observed during Mine 8 deployment. 
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6.2 Data Analysis 
This section presents a detailed exploration of the relationship between rockfall events and 
meteorological factors. It begins by outlining the steps to validate the data, followed by a detailed 
discussion of the analytical and modeling techniques employed. The analysis incorporates Weight 
of Evidence (WoE) and Information Value (IV) to quantify the predictive strength of individual 
meteorological factors, providing an initial understanding of how specific meteorological conditions 
correlate with the likelihood of rockfall. Building on these findings, logistic regression modeling was 
used to create a more comprehensive predictive framework that accounts for the combined effects 
of multiple meteorological factors. The resulting model aims to capture the relationship between 
meteorological factors and rockfall events, offering a probabilistic approach to estimate rockfall risk 
under varying conditions.   

6.2.1 Data Validation 
During initial review of the Mine 7 thermal recordings, several intervals in which the slope under 
investigation was obscured due to meteorological events (e.g., heavy snow, precipitation, fog) were 
observed. Although thermal cameras generally perform better than visible light cameras in adverse 
weather conditions, the distance between the camera and the slope – approximately 7,500 feet – 
compounded the effects of the weather, at times fully obscuring the view of the slope. These 
obscured periods accounted for approximately 37% of the total observation period and were 
removed from both the rockfall and meteorological datasets prior to analysis. 

In the initial review of the Mine 8 data, several instances were identified where frequency of 
detections was unreasonably high, and unlikely to be attributed to actual rockfall events. It was 
determined that the user-defined algorithm parameters for Mine 8 were overly sensitive, causing a 
large number of closely clustered false positives primarily triggered by cloud movement or airborne 
dust. To address this issue, a filter was applied to limit the detection frequency to one-per-minute. 
This adjustment effectively eliminated the majority of false positives while still preserving true 
positive results. In future applications, more site-specific tailoring of the algorithm parameters will 
help avoid this issue by better accounting for local environmental conditions.   

6.2.2 Exploratory Data Analysis 
Weight of Evidence (WoE) and Information Value (IV) were used to assess the predictive strength of 
the binned meteorological data and to quantify the overall importance of each meteorological 
variable in predicting rockfall initiation. These tools, commonly used in the financial and banking 
industry for credit scoring and risk modeling, have previously been applied by Nissen et al. (2022) to 
quantify the impact of meteorological data on rockfall initiation. WoE provides a means of converting 
continuous variables (e.g., temperature) into categorical variables. The first step in this 
transformation is binning of the continuous variable. Binning can be defined in several ways, 
including equal-width and equal-frequency binning. For this analysis, all meteorological parameters 
were broken into 20% bins representing five intervals of equal width across the range of the data set. 
WoE compares the distribution of events (instances where rockfall was observed) to non-events 
(instances where no rockfall initiation was observed) across different categories of a predictor 
variable (e.g., temperature), as defined in Equation 2 ( Siddiqi, 2006, p. 81).   

Equation 2: Weight-of-Evidence (WOE) 

𝑊𝑊𝑊𝑊𝑊𝑊 = ln ( 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 𝑊𝑊𝑜𝑜 𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑡𝑡𝑒𝑒 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 𝑊𝑊𝑜𝑜 non-events) 
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Table 6-4 presents the bins defined for the temperature data set and associated distribution of 
rockfall events as an example.  

Table 6-4. Example Bins for Temperature Data Set Collected at Mine 8 (n=2,017) 
Bin 
ID Bin Extents (°C) Bin Count % of 

Total 
Non-Event count (Data without 

Observed Rockfall) 
 Event Count (Data with 

Observed Rockfall) 
1 [16.54, 22.49) 239 11.8% 96 143 
2 [22.49, 28.44) 693 34.4% 433 260 
3 [28.44, 34.39) 520 25.8% 333 187 
4 [34.39, 40.34) 437 21.7% 193 244 
5 [40.34, 46.29) 128 6.3% 46 82 

SUM 2017 100% 1101 916 

For example, bin two in Table 6-4 contains 693 data points, or hours in which the average temperature 
fell between 22.49 and 28.44°C, out of 2,017 total data points. Of these data points, 260 are 
considered “Events”, or hours during which rockfall was observed, and 433 are considered “Non-
Events”, or hours during which no rockfall was observed. The WoE value for this bin can be calculated 
by taking the natural log of 0.28 (percent of data points classified as Events out of all Events (n = 916) 
across all bins of temperature) over 0.39 (percent of data points classified as Non-Events (n = 1101) 
across all bins of temperature). 

Information Value (IV) aggregates the WoE values to quantify the overall predictive power of a variable 
(Nissen et al., 2022). It helps assess how well a predictor can distinguish between events and non-
events or, in the context of this analysis, which meteorological factors are most influential in 
predicting rockfalls. The IV is calculated by summing the contributions of the WoE across all 
categories of the variable, weighted by the diVerence in proportions of events and non-events 
(Equation 3).  

Equation 3: Information Value (IV) 

𝐼𝑉 = 	 % (𝑝𝑒𝑟𝑐𝑒𝑛𝑡	𝑜𝑓events! 	− 		𝑝𝑒𝑟𝑐𝑒𝑛𝑡	𝑜𝑓	non-events!) ×𝑊𝑂𝐸
"!#"$

!%&

 

Table 6-5 provides a summary of IV thresholds and interpretations as outlined by Siddiqi (2006). 
These values are used to assess the predictive power of individual variables in relation to the binary 
outcome being modeled. The WoE values represent an empirical correlation between the binned 
parameters that coincide with the most rockfall events and the IV values aim to quantify the strength 
of that correlation. An example of this process is provided in Table 6-6, which presents the inputs and 
resulting WoE and IV values for temperature at Mine 8. Figures 6-8 and 6-9 show the distribution of 
temperature data and the event empirical probability for the same example. Distributions and event 
empirical probability graphs for all meteorological parameters at Mines 7 and 8 are provided in 
Appendix B.2. Information Values for all meteorological parameters considered in this analysis are 
presented in Table 6-7.  

Table 6-5. Information Value (IV) Thresholds and Corresponding Interpretations (Siddiqi, 2006, p. 81) 
Information Value Variable Predictiveness 
< 0.02 Not useful for prediction 
0.02 - 0.1 Weak predictor 
0.1 - 0.3 Medium predictor 
0.3 - 0.5 Strong predictor 
> 0.5 Very strong predictor (rare in practice, may indicate overfitting) 
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Figure 6-8: Example showing the distribution of Temperature data at Mine 8 (IV=0.189) across the defined bins, as well 
as the distribution of Non-Event and Event data within each bin. Temperature data points that do not correspond with a 
rockfall initiation are classified as Non-Events. Temperature data points that do correspond with a rockfall initiation are 
classified as Events. 

Figure 6-9: Event Empirical Probability for each bin of Temperature at Mine 8 (IV=0.189) 
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Table 6-6. Weight of Evidence (WoE) and Information Value (IV) Calculation Results for Temperature at Mine 8. 
Bin   
(°C) 

Total 
Count % of Total Non-Event 

Count 
Event 
Count 

Event 
Empirical 

Probability1 
WoE Bin IV Parameter 

IV 

[16.54, 22.49) 239 11.8% 96 143 59.8% 5.82E-01 4.01E-02 

1.89E-01 
[22.49, 28.44) 693 34.4% 433 260 37.5% -3.26E-01 3.57E-02 
[28.44, 34.39) 520 25.8% 333 187 36.0% -3.93E-01 3.86E-02 
[34.39, 40.34) 437 21.7% 193 244 55.8% 4.18E-01 3.81E-02 
[40.34, 46.29) 128 6.3% 46 82 64.1% 7.62E-01 3.64E-02 

1: Event empirical probability refers to the proportion of observed Events. It is calculated as the ratio of the number of events to the 
total number of observations and reflects the observed likelihood of the event happening, based purely on historical data. In the 
context of this analysis, it represents the probability of a rockfall occurring based on the frequency of rockfall events in the dataset, 
without the influence of any predictive model. 
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Table 6-7. Information Values (IV) for Evaluated Parameters at Mine 7 and Mine 8 

Parameter Mine 7 IV Mine 8 IV 

Temperature (℃) 0.028* 0.189** 
Precipitation (mm) 0.015 0.052* 

24hr Precipitation (mm) 0.064* 0.028* 
Wind (m/s) 0.009 0.004 

Solar Irradiance (W/m2 ) 0.049* 0.092* 
Precipitation Intensity (mm/hr) 0.013 0.047* 

Freezing Potential (℃*hour) 0.085* - 
*denotes IV ≥ 0.02; **denotes IV ≥ 0.10 

These results indicate that temperature, precipitation, and solar irradiance may serve as weak to 
moderate predictors of rockfall events. However, these correlations could be coincidental, 
necessitating further analysis. To determine the statistical significance of each parameter, a logistic 
regression model was applied as described in the following subsection.   

6.2.3 Logistic Regression Modeling 
Logistic regression is machine learning model commonly used to determine the predictive power of 
independent variables (e.g., meteorological parameters) on a binary outcome (e.g., rockfall or no 
rockfall). In the context of this study, logistic regression was used to quantify the relationship 
between meteorological parameters and rockfall occurrence. Logistic regression calculates the 
probability of the event by applying a sigmoid function to a linear combination of the predictor 
variables, as shown in the example provided in Figure 6-10. The upper half of the function represents 
one outcome (e.g., rockfall), and the lower half represents the other (e.g., no rockfall). Where y=0.5, 
there is equal likelihood of an outcome occurring or not occurring. As 𝑥𝑥 increases, the probability of 
the outcome occurring increases.   

Figure 6-10: Example sigmoid curve representing a fitted logistic regression model.(Logistic Regression, n.d.). In the 
example, 𝑦𝑦 = 0.8 indicates that there is an 80% probability of rockfall occurring, whereas 𝑦𝑦 = 0.3 indicates a 30% 
probability of rockfall. 

Typical outputs of logistic regression include: 

1. Predicted values for each observation in the dataset. These values represent the model’s 
estimated output (rockfall or no rockfall) based on each unique combination of predictor 
variables. This can be used to evaluate model performance in relation to the actual or 
observed data set.   
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2. Coefficients for each predictor variable. These provide a measure of the strength and
direction of the relationship between the predictor and the probability of the outcome.  

3. Odds ratios (OR) are calculated by applying the exponential function to each coefficient.
They represent the degree to which the odds of the outcome change with each one-unit
increase in the predictor variable. For example, an OR for temperature that is greater than 1.0
would indicate that as temperature increases, so do the odds of a rockfall. In contrast, an OR
is less than 1.0 indicates that as temperature increases, the odds of a rockfall decrease.

4. Confidence intervals, which provide an estimate of the range of OR values estimated at 95% 
confidence.

5. P-values for each coefficient, which provide a measure of whether a predictor variable is
statistically significant.

For this analysis, logistic regression was initially conducted using the raw, continuous data set for 
each of the meteorological parameters with information values indicating weak to moderate 
predictive power (IV > 0.02). These parameters include temperature, 24-hour precipitation, solar 
irradiance, and freezing potential for Mine 7 and temperature, precipitation, 24-hour precipitation, 
solar irradiance, and precipitation intensity for Mine 8. Appendix B provides the coefficients, odds 
ratios, p-values, and confidence intervals for each parameter for all model runs. Figure 6-11 presents 
Receiver Operating Characteristic (ROC) curves for Mines 7 and 8, respectively. ROC curves provide 
a metric for model performance by plotting the relationship between False Positive Rate (how often 
the model incorrectly predicts a rockfall) and True Positive Rate (how often the model correctly 
predicts a rockfall). An ROC curve for a perfect model would rise sharply to where TPR=1 and FPR=0. 
A totally random model would plot as a diagonal line from the origin to the top right of the graph. A 
model that plots along this line would perform no better than a model based on results determined 
by flipping a coin. The area under the curve (AUC) is therefore representative of model performance, 
with higher AUC values indicating a more effective model and AUC values close to 0.5 suggesting no 
predictive power. The results for Mine 7 show a low AUC of 0.56, indicating that the model is only 
slightly better than random guessing (AUC=0.5). The model for Mine 8 performed slightly better, with 
an AUC of 0.66, suggesting some discriminatory power.   
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Figure 6-11: Receiver Operating Characteristics of the continuous meteorological data at each mine with no binning or 
trend scheme applied. 

Model Refinement: Binning 
To better capture nonlinear relationships between meteorological factors and rockfall risk, the raw 
meteorological data set was divided into 20% bins, similar to the WoE analysis performed in the 
previous section. This allowed for evaluation of how rockfall risk changes across distinct ranges. 
Figure 6-12 presents the results of logistic regression modeling using the binned parameter data for 
Mines 7 and 8. For Mine 7, the AUC increased slightly from 0.56 to 0.59, indicating a slight 
improvement in the model’s ability to predict rockfall. For Mine 8, however, the AUC remained 
relatively constant, with a slight decrease from 0.66 to 0.65. Both results suggest that binning alone 
does not significantly enhance model performance. 

Figure 6-12: Receiver Operating Characteristics of the meteorological data at each mine with binned parameters, but 
no trend categorization. 
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Model Refinement: Trend Categorization 
The data was further divided into three trend directions: increasing, decreasing or static. This 
categorization was done to account for how varying trends, such as changes in temperature, may 
differently impact rockfall risk compared to stable temperatures. Figure 6-13 presents the ROC 
curves for the trend-based analysis for Mines 7 and 8. This resulted in an AUC of 0.58 for Mine 7 and 
AUC of 0.70 for Mine 8, showing relatively static performance for Mine 7 and slightly improved 
performance for Mine 8. 

Figure 6-13: Receiver Operating Characteristics of the meteorological data at each mine with trend categorization, but 
no binned parameters. 

Model Refinement: Combining Binning and Trend Categorization 
Finally, the binning and trend categorization methods were combined to capture both the magnitude 
and directional trends in the data. Figure 6-14 shows the ROC curves for this combined analysis. The 
AUC value for Mine 7 improved to 0.66 and the AUC for Mine 8 increased to 0.77, indicating a 
substantial improvement in both models’ ability to distinguish between rockfall and no rockfall. This 
suggests that combining both binning and trend categorization provides a more accurate model for 
predicting rockfall risk based on meteorological conditions. 
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Figure 6-14: Receiver Operating Characteristics of the meteorological data at each mine with binned parameters and 
trend categorization. 

6.3 Discussion 
Table 6-8 provides a summary of the parameter inputs and resulting Receiver Operator Characteristic 
AUC values. The results show that models generated without any segmentation (e.g., binning, trend 
categorization) of the meteorological data have limited predictive power. This is believed to be due to 
the unsegmented meteorological data not adequately capturing potentially non-linear relationships 
between the input parameters and rockfall risk. Subsequent model runs incorporate segmentation 
of the parameters into 20% bins, categorization by trend, and a combination of approaches. Binning 
and trend categorization alone do not significantly enhance model performance, however, there is a 
marked improvement in predictive power when these approaches are combined. P-values for the 
final model results are provided by model input in Table 6-9. Odds ratios for the final model results 
are presented in Table 6-10. Coefficients, odds ratios, p-values, and confidence intervals are 
provided for all other model runs in Appendix B.7. 

Table 6-8. Summary of Model Iterations and Associated Receiver Operator Characteristic AUC Values 
Mine 7 Mine 8 

Model Inputs # of Input 
Parameters1 

Area under 
ROC Curve2 

# of Input 
Parameters 

Area under 
ROC Curve 

Continuous meteorological data - no 
binning or trend categorization 4 0.56 5 0.66 

Meteorological data – binned, no trend 
categorization 20 0.59 25 0.65 

Meteorological data - categorized by 
trend, no binning 12 0.58 15 0.70 

Meteorological data - binned and 
categorized by trend 60 0.66 75 0.77 

1: Total number of parameters after binning and trend categorization 
2: Area under the curve (AUC) from the Receiver Operator Characteristic plots 

The model inputs with p-values less than 0.05 (confidence level of 95%) are considered statistically 
significant. This means the parameter may have a meaningful effect on rockfall initiation, rather than 
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Min Max + - o Min Max + - o
0.00 5.89 0.151 -- 0.070
5.89 11.78 0.232 0.260 --

11.78 17.68 0.438 0.940 --
17.68 23.57 0.220 0.965 --
23.57 29.46 -- 0.837 --
-29.45 -20.61 0.910 -- -- 16.54 22.49 0.006** -- --
-20.61 -11.76 0.833 0.420 -- 22.49 28.44 -- -- 0.936
-11.76 -2.92 0.17 -- 0.820 28.44 34.39 0.259 -- --
-2.92 5.93 0.325 0.680 -- 34.39 40.34 -- -- --
5.93 14.77 -- -- 0.678 40.34 46.83 -- -- 0.994
0.00 1.89 0.063 -- 0.004* 0.00 8.59 0.113 -- --
1.89 3.78 0.013* 0.493 0.861 8.59 17.17 0.708 0.474 0.148
3.78 5.68 0.431 -- 0.518 17.17 25.76 0.147 0.013* ---
5.68 7.57 0.001*** -- 0.053 25.76 34.34 0.989 0.993 --
7.57 9.46 0.732 0.001*** -- 34.34 42.93 0.989 0.591 0.206
0.18 209.06 0.001*** -- 0.991 0.00 288.24 0.001*** -- 0.910

209.06 418.12 0.671 0.112 -- 288.24 576.47 0.001*** 0.003** --
418.12 627.18 0.109 0.032* -- 576.47 864.71 0.004** 0.250 --
627.18 836.23 0.345 0.793 -- 864.71 1152.95 -- -- --
836.23 1045.47 0.857 -- -- 1152.95 1441.18 -- -- --

0.00 3.55 0.280 -- 0.485
3.55 7.11 0.985 -- --
7.11 10.66 0.999 -- --

10.66 14.21 -- -- --
14.21 17.77 0.991 -- 0.999
0.00 5.82 0.273 -- 0.269
5.82 11.63 -- -- --

11.63 17.45 -- -- --
17.45 23.26 -- -- --
23.26 29.08 -- -- --

Precipitation Intensity 
(mm/hr)

Not Modeled (IV < 0.02)

Table 6-9: Calculated P-Values of parameters fit to logistic regression model for Mine 7 (left) and Mine 8 (right). 

Parameter
Mine 7 Mine 8

Interval P-Values1, 2 Interval P-Values1, 2

Freezing Potential 
(°C*hour)

Parameter Not Tested

Temperature (°C)

Rolling Sum of 
Precipitation Past 24 

Hours (mm)

Solar Irradiance (W/m2)

Precipitation (mm) Not Modeled (IV < 0.02)

1: * p <.05, ** p <0.01, *** p<0.001; 2: (+)=increasing, (-)=decreasing, (o)=static

Automated Rockfall Detection from Thermal Imaging | Final Report

31 August 2024 BAA: 75D301-22-R-61070 Page 43 of 78



Min Max + - o Min Max + - o
0.00 5.89 1.966 -- 1.855
5.89 11.78 1.876 0.728 --

11.78 17.68 3.026 1.124 --
17.68 23.57 4.397 0.926 --
23.57 29.46 -- 1.617 --
-29.45 -20.61 1.285 -- -- 16.54 22.49 3.151 -- --
-20.61 -11.76 1.39518 0.344 -- 22.49 28.44 -- -- 0.674
-11.76 -2.92 2.081458 -- 1.371 28.44 34.39 2.450 -- --
-2.92 5.93 1.599586 1.123 -- 34.39 40.34 -- -- --
5.93 14.77 -- -- 1.265 40.34 46.83 -- -- 1.069
0.00 1.89 0.364 -- 0.272 0.00 8.59 2.282 -- --
1.89 3.78 0.224 0.435 0.895 8.59 17.17 1.069 0.406 0.890
3.78 5.68 0.471 -- 2.069 17.17 25.76 0.731 0.395 --
5.68 7.57 0.034 -- 0.219 25.76 34.34 1.146 0.667 --
7.57 9.46 0.663 0.037 -- 34.34 42.93 1.108 0.879 1.262
0.18 209.06 1.739 -- 0.000 0.00 288.24 0.394 -- 0.499

209.06 418.12 0.866 0.587 -- 288.24 576.47 1.270 1.884 --
418.12 627.18 0.596 0.415 -- 576.47 864.71 0.332 0.112 --
627.18 836.23 0.680 1.209 -- 864.71 1152.95 -- -- --
836.23 1045.47 0.889 -- -- 1152.95 1441.18 -- -- --

0.00 3.55 2.360 -- 0.982
3.55 7.11 3.752 -- --
7.11 10.66 2.238 -- --

10.66 14.21 -- -- --
14.21 17.77 3.146 -- --
0.00 5.82 1.794 -- 0.510
5.82 11.63 -- -- --

11.63 17.45 -- -- --
17.45 23.26 -- -- --
23.26 29.08 -- -- --

Precipitation (mm) Not Modeled (IV < 0.02)

1: (+)=increasing, (-)=decreasing, (o)=static

Freezing Potential 
(°C*hour)

Parameter Not Tested

Temperature (°C)

Rolling Sum of 
Precipitation Past 24 

Hours (mm)

Solar Irradiance (W/m2)

Precipitation Intensity 
(mm/hr)

Not Modeled (IV < 0.02)

Table 6-10: Odds ratios for parameters fit to logistic regression model for Mine 7 (left) and Mine 8 (right). 

Parameter
Mine 7 Mine 8

Interval Odds Ratios1 Interval Odds Ratios1
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a chance occurrence. Statistically significant meteorological parameters (parameters with p-values 
less than 0.05 for one or more data sub-set) for Mine 7 include past 24-hour precipitation and solar 
irradiance. This outcome corroborates the finding by Nissen et al. (2022) that precipitation may be 
the most influential factor on rockfall. One key difference between that study and this work is the 
data set analyzed here includes significant snowfall during the Mine 7 deployment. This means the 
Mine 7 includes both liquid and frozen precipitation, whereas the data set used by Nissen et al. 
included only liquid precipitation. Solar irradiance had a statistically significant impact on rockfall 
initiation at Mine 7, however, 24-hour precipitation data subsets included the lowest p-values across 
all model inputs. Solar irradiance may influence rockfall occurrence through several mechanisms, 
including thermal expansion of the rock mass, differential heating of rock and air due to solar 
irradiance (Nigrelli et al., 2022), thawing of ice within rock fractures (D’Amato et al 2016), and 
increased pore pressure from ice melt. 

At Mine 8, temperature, 24-hour precipitation, and solar irradiance have p-values indicating a 
possible effect on rockfall initiation, with solar irradiance as the most statistically significant 
parameter. Of the 3,819 rockfalls recorded at Mine 8, 2,368 initiations (61%) occurred between the 
hours of 07:00 and 17:00. This aligns with the finding that solar irradiance a statistically significant 
parameter and suggests the warming of rocks during the morning to mid-afternoon hours could be a 
contributing factor to rockfall initiation.   

Solar irradiance and 24-hour precipitation proved to be the most statistically significant parameters 
at both sites. These mines are in very different climates, with Mine 7 located in southern British 
Columbia and Mine 8 in the high desert of Arizona. This implies that the influence of solar irradiance 
and 24-hour precipitation on rockfall initiation transcends local environmental factors unique to 
each site. Future work will focus on examining these parameters potential for widespread application 
in rockfall forecasting. 
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6.4 Limitations and Future Work 
The findings of this study highlight the potential for quantitative empirical correlations between 
rockfall and meteorological forces, and they serve as a basis for continued research into rockfall 
forecasting. However, confident forecasting will require future work at sites exhibiting a wide diversity 
of climates, geology, slope design, and other factors, to identify potential site-specific and site-
agnostic environmental forces that contribute to rockfall initiation. As part of this continued 
research, the rockfall detection algorithm’s parameters will require further modification, and the 
results must be validated to bolster confidence in its ability to optimize true detections and limit false 
detections. Preliminary validation of the algorithm-generated rockfall datasets used in this analysis 
was conducted as described in Section 6.2.1. However, further validation is necessary to reduce the 
occurrence of false positives, or instances where non-rockfall movement is identified by the 
algorithm as rockfall. Ongoing work includes an in-depth validation process involving human review 
of each algorithm-generated rockfall detection. Future work should include re-running the same 
analysis and modeling procedures to determine whether the findings are influenced by this more 
detailed validation effort. Additionally, an evaluation of detection capabilities as a function of the 
distance between the thermal camera and slope of interest must be performed. The minimum 
detectable rock size decreases as a function of this distance, but the relationship has not been 
quantified. This is a critical step since the rockfall detection dataset is the basis for this type of 
analysis. However, it is possible that the analysis can be performed equally as well at varying 
distances if the relative patterns of rockfall are similar. 

Lastly, the meteorological data analyzed for this study were collected at various locations throughout 
the mine sites, and therefore serve only as an approximation of the conditions at the slope of interest. 
All metrics besides precipitation were acquired at the MMP, which was located several thousands of 
feet away from each slope. Precipitation data was provided by the mine sites and was also collected 
from locations at significant distances from the slopes. The potential discrepancies between the 
measured and actual conditions of each slope likely varies between the meteorological factors. For 
example, isolated monsoon storms affecting the Mine 8 slope may not be captured by the 
precipitation gauges located elsewhere on the mine site, whereas air temperature measured on the 
MMP at each site may differ only slightly from the conditions at the slope.   
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7 Knowledge Dissemination and Impact 
This section documents the contributions the project has made in terms of technical publications 
and presentations, as well as education and outreach efforts. 

7.1.1 Journal Articles 
Schafer, K., Wellman, E., Ross, B., Potter, J., Kemeny, J., & Williams, C. (2024). Thermal Imaging 
Analyses of Pre-Cursory Rockfalls Leading to Large Slope Failures at the Bingham Canyon Mine, USA 
[Paper submitted for publication, Rock Mechanics and Rock Engineering]. 

Wellman, E., Schafer, K., Williams, C., Ojum, G., Potter, J., Brown, L., Meyer, B., Ross, B., & Kemeny, 
J. (2024). Observation of Rockfall in the Thermal Infrared [Paper submitted for publication, Rock 
Mechanics and Rock Engineering]. 

7.1.2 Refereed Proceedings 

Potter, J., Meyer, B., Ross, B., McNabb, J., Keefner, J., Williams, C., Brown, L., Prescott, B., Cabrejo, A. 
(2024) Development of a Prototype Thermal Imaging Rockfall Detection System. In American Rock 
Mechanics Association Symposium. Golden, Colorado.   

7.1.3 Presentations 
Thermal Imaging for Rockfall Detection, Julia Potter and Brad Ross, Colorado Department of 
Transportation, virtual presentation, December 8, 2022.   

Thermal Imaging for Rockfall Detection, Julia Potter and Brad Ross, Association of Geohazard 
Professionals, virtual presentation, 15 December 2022.   

Thermal Imaging for Rockfall Detection, Julia Potter and Chad Williams, Transportation Review Board 
Rockfall Management Subcommittee, Washington DC, 8 January 2023.   

Comparison of Doppler Radar to Thermal Imaging for Rockfall Detection, Bobby Prescott (presenter), 
Edward Wellman, Brad Ross, Julia Potter, Chad Williams, Jake Davidson, R. Nielsen, SME 
MINEXCHANGE Annual Conference, Denver, CO, 27 February 2023.   

Automated Detection of Rockfalls from Thermal Imaging Data, Benjamin Meyer (presenter), Leonard 
Brown, Julia Potter, Bobby Prescott, Brad Ross, Chad Williams, SME MINEXCHANGE Annual 
Conference, Denver, CO, 28 February 2023.   

Thermal Imaging for Rockfall Detection, Leonard Brown, Learning Laboratories Quarterly Meeting, 
virtual presentation, 15 March 2023.   

Application of Thermal Infrared Cameras for Rockfall Detection, Julia Potter, RocScience 2023 
Conference, Toronto, ON, 22 April 2023.   

Application of Thermal Infrared Cameras for Rockfall Detection, Julia Potter, Life of Mine – 
Maintaining Sustainability through Geoscience, virtual presentation, May 2023.   

Thermal Imaging for Rockfall Detection: Project Updates and Standalone System Development, 
Benjamin Meyer, Bobby Prescott, and James McNabb, GroundProbe Users Conference, Tucson, AZ, 
August 18, 2023.   

Thermal Imaging for Rockfall Detection, Leonard Brown, South Dakota School of Mines & Technology 
Seminar Series, virtual presentation, 13 September 2023. 
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Automated Detection of Rockfall in the Thermal Infrared, Benjamin Meyer and Julia Potter, 
Transportation Review Board Rockfall Management Subcommittee, Washington DC, 7 January 2024.   

Automated Rockfall Detection Using Thermal Imaging: Recent Developments in Tracking, Prediction, 
and Alarming, Benjamin Meyer (presenter), Leonard Brown, Julia Potter, James McNabb, Brad Ross, 
Chad Williams, SME MINEXCHANGE Annual Conference, Phoenix, AZ, 28 February 2023.   

Geotechnical Applications of Thermal Imaging: Observations and Recommendations, Julia Potter 
(presenter), Benjamin Meyer, Leonard Brown, James McNabb, Brad Ross, Chad Williams, SME 
MINEXCHANGE Annual Conference, Phoenix, AZ, 28 February 2023.   

7.1.4 Educational Outreach Events 
The research team assisted with several outreach events throughout the duration of the project, 
including:   

• Mining Engineering Day at Summer Engineering Academy (SEA) events between 2022 
and 2024. SEA is a summer outreach program for rising 9th through 12th graders, who want 
to learn more about engineering. Participating students were introduced to the role of 
monitoring in open pit mining, and specifically how thermal imaging and drones can be 
used to improve miner safety.   

• Mines for Limitless Minds, a mining-specific career fair organized by the School of 
Mining and Mineral Resources at the University of Arizona in 2022 and 2023. The research 
team set up a “thermal portrait” booth, where students were introduced to the concept of 
thermal imaging for detecting movement. The GCE also organized a drone obstacle course 
as part of this event.   

7.2 Student Involvement and Impact 
Students involved in the project gained hands-on experience with thermal cameras and video 
monitoring systems. Multiple students assisted in managing the video recording and export process 
on the MMP through remote connections to the FLIR Meridian NVR system. Additionally, students 
were instrumental in reviewing the thermal video archives for rockfall events and extracting small 
video clips from the Phase 1 video archives for use in calibrating the automatic detection algorithm 
for individual sites. Students assisted in testing the physical setup of the prototype standalone 
system. Student assistance was also vital in project outreach. Students attended SME state and 
national conferences to spread awareness about the project as part of the University of Arizona 
booth while also giving conference attendees the chance to interact with and learn about thermal 
cameras through having thermal portraits made. 
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8 Conclusions and Future Work 
Cost-efficient options for real-time rockfall detection and monitoring are a critical need in the mining 
industry. In a collaborative effort with NIOSH and industry partners, the GCE has demonstrated the 
viability of using commercial off-the-shelf thermal cameras and moderate computing hardware to 
automatically detect and alert for rockfall in open pit mining environments. Significant components 
of this work included the creation of an automated detection algorithm, new developments in 
rockfall monitoring systems, and new approaches for failure forecasting which will inform future 
strategic monitoring initiatives. Notably, a prototype tactical monitoring system using thermal 
imaging cameras has been successfully developed and tested in a non-active mining environment, 
achieving technology readiness level TRL6 (prototype demonstration in relevant environment). Using 
heuristics and motion filter approaches, the prototype system can reliably identify and track rockfall 
events under a variety of environmental and geotechnical conditions at rates that are comparable to 
human observers. Furthermore, the system facilitates longitudinal analysis of slope stability, leading 
to new findings, such as the potential influence of solar irradiance on rockfall initiation, which are 
useful in developing new predictive models for rockfall forecasting. 

Field testing of the prototype system also yielded valuable insights to improve the hardware and 
software components. For example, deployment of the prototype system resulted in a greater 
understanding of the ideal physical characteristics of a thermal rockfall detection device as well as 
a more efficient software solution for real-time rockfall detection and tracking that will support less 
powerful computing devices. The resulting integrated hardware and software system represents a 
significant step toward enhancing situational awareness and addressing the safety risks posed by 
rockfall, which will continue to be improved through future research, testing, and prototyping. 

Future work should focus on optimizing the data acquisition system for short-term, tactical 
monitoring of safety critical areas, while also exploring the applicability of this technology for long-
term, strategic monitoring use cases. Three specific recommendations for future work are outlined 
below.   

8.1 Development of Marketable Tactical Thermal Rockfall Monitoring 
System 

To realize a commercially deployable system, the following two steps are required: 1) final 
development and adaptation of the Phase 2 algorithm and software for tactical applications and 2) 
final development and adaptation of the data acquisition system to a marketable tool for reliable, 
tactical monitoring of safety-critical areas.   

Development and Adaptation of Tactical Monitoring Software. The Phase 2 prototype software 
establishes a groundwork for development of a commercially viable software system for detecting, 
tracking, and alarming for rockfall. Final development will include gathering feedback from industry 
focus groups, incorporating research findings regarding complementary technologies, and 
developing a front-end user interface to increase usability and facilitate deployment across various 
operating systems and hardware.   

Development and Adaptation of Tactical Monitoring System. A tactical solution will involve further 
development of the existing standalone prototype, with enhancements made based on experience 
gained during Phase 2. For example, while setup and tailoring of the system can be done in less than 
20 minutes, ease of portability could be improved. The separate computer, PoE system, camera, and 
tripod are difficult for a single operator to carry. Currently, the unit requires ground shipping as 
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“hazardous goods" due to battery size, limiting the ability to quickly deploy to a location beyond 
driving distance. The resulting product may be used for tactical monitoring of safety-critical areas 
when rapid data generation and alarming is needed (e.g., personnel working in high rockfall risk 
areas). Final development of the tactical monitoring system will include further research into 
necessary hardware, power systems, computing capability improvements, and additional prototype 
development. 

8.1.1 Comparison with Alternative and Complementary Technologies 
A robust monitoring program relies on the integration of diverse hazard detection technologies for 
cross-validating detections. Comparison with alternate and complementary technologies will also 
improve market awareness by identifying opportunities in the existing market. It is therefore 
important that multiple technologies are researched to identify synergies and potential integrations 
between tools. Commercially available real-time rockfall solutions are currently limited to Doppler 
radar units (e.g., IDS GeoRadar’s RockSpot, GroundProbe’s Petra), which are costly and have 
limitations in range, resolution, and atmospheric changes. Other solutions like LiDAR and 
photogrammetry can map rockfall locations and measure volumes but are trailing indicators lacking 
temporal resolution (Walton et al., 2023).   

A thermal rockfall monitoring solution would provide important cross-validation functionality and 
has the potential to improve the effectiveness and reliability of existing systems. For example, 
combining a thermal monitoring solution with a Doppler radar unit could potentially improve overall 
system range, reliability, and situational awareness. Preliminary work comparing thermal imaging 
with Doppler radar units was completed during Phase 1 of the project, but this was done before the 
Phase 2 algorithm was developed (Prescott, et al., 2022). The Phase 2 algorithm provides new 
opportunities to improve detection reliability and sensitivity which should be thoroughly evaluated 
against Doppler solutions using a quantitative evaluation framework. Furthermore, combining 
thermal monitoring with LiDAR or photogrammetry would allow for post-rockfall analysis, including 
volumetric calculations and high-resolution mapping of initiation and deposition regions.   

Throughout Phases 1 and 2, the GCE has fostered relationships with monitoring system providers, 
mining companies, and other individuals and researchers currently marketing or using these 
alternate technologies. These relationships should be leveraged to ensure a collaborative approach 
in comparing and integrating diverse hazard detection technologies. Field work may be completed 
using the Phase 2 prototype algorithm in conjunction with the GCE’s Mobile Monitoring Platform 
(developed during project Phase 1), the Phase 2 prototype data acquisition system, and an advanced 
prototype system discussed below (Section 8.3). 

8.2 Development of Prototype Strategic Thermal Monitoring Tools 
Phases 1 and 2 have demonstrated the efficacy of thermal video in reliable detection and tracking of 
rockfall in open pit mining environments (Prescott et al., 2022; Ross et al., 2022; Wellman et al., 2022; 
Schafer et al., 2023). Furthermore, previous work has documented the exponential increase in 
frequency of rockfall before a major slope failure event (Schafer et al., 2023). Observations made by 
the GCE, along with prior studies, suggest additional geotechnical use cases for thermal imagery 
that have the potential to enhance miner safety (e.g. Guerin et al., 2019; Schafer et al., 2023; Rosser 
et al., 2007). Work completed thus far has focused on development of a tactical rockfall monitoring 
solution that provides alarming capabilities for safety critical areas. Further research is needed to 
better understand and document potential applications of thermal imaging beyond tactical rockfall 
monitoring. Strategic thermal monitoring and analytical tools should be explored for: 
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• Detecting, delineating, and monitoring the evolution of groundwater seeps, which can 
provide information about the state of potentially destabilizing groundwater in the slope. 

• Evaluating catch bench performance based on the data output from the Phase 2 algorithm. 

• Monitoring large-scale slope movements to inform slope management and time-of-failure 
predictions (Schafer et al., 2023; Rosser et al., 2007). 

• Identifying rock bridges and thus potential points of future failure in a mining environment, 
expanding upon methods used on El Capitan in Yosemite National Park (Guerin et al., 2019). 

8.3 Rockfall Forecasting and Statistical Modeling 
The objective of this phase of the project was to support the development of weather-related trigger 
action response plans for geotechnical engineers. To achieve this, the following tasks were 
completed: 

1. Construction of two databases: 
a. A rockfall database generated by the GCE’s automated rockfall detection algorithm 

from archived thermal video from Mines 7 and 8. 
b. A meteorological database compiled from temperature, precipitation, wind speed, 

and solar irradiance data collected during deployment. 
2. Empirical data analysis to prioritize meteorological parameters based on their predictive 

power. This was done by combining both databases to calculate Weight of Evidence and 
Information Value for each meteorological parameter.   

3. Logistic regression modeling to establish relationships between meteorological parameters 
and rockfall occurrence. Parameters identified as potential predictors in the previous task 
were combined with the rockfall dataset to build site-specific logistic regression models. 

Initial models without segmentation of meteorological data had limited predictive power. To improve 
this, segmentation through binning and trend categorization was introduced. The results indicate 
that models with segmentation (binning and trend categorization) show improved predictive 
performance. Statistically significant parameters across both sites include solar irradiance and 24-
hour precipitation, suggesting these factors have a broad influence on rockfall initiation, regardless 
of local climate differences. 

Future work will build on the findings detailed in Section 6 and focus on refinement of the modeling 
procedures. A more exhaustive validation effort is currently under way involving detailed human 
review of all algorithm-identified events from the Mine 7 and Mine 8 datasets. The analysis and 
modeling will then be re-run with the validated dataset to determine whether the findings are 
impacted by the reduction of any existing false positives. The results of this effort will also be used to 
further refine the algorithm and better understand the site-specific parameters necessary to reduce 
false positives. Additionally, future work should explore the application of different classification 
methods to improve the accuracy of rockfall forecasting. 
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Appendix A: Details of Automated Rockfall Detection 
Process 

A.1: Overall Algorithmic Process 
The detection algorithm consists of the following steps: 

• Create averaged background 

• Compare current image to background 

• Identify motion regions 

• Motion prediction 

• Track assignment 

• Evaluate movement 

• Alarm 

In order to identify and track separate moving objects which may appear intermittently or 
simultaneously, a tracking data structure is built for each identified movement. 

A.2: Movement Tracks 
Each moving object is recorded and monitored by a “track” – a data structure including information 
about the movement’s origin, pathway over time, speed, and a built-in location prediction (Kalman 
filter). 

A.3: Create Averaged Background 
Thermal video is inherently noisy. Surface temperatures observed during the project can fluctuate 
rapidly. Figure A-1 shows point temperature fluctuations over 29 frames of thermal video 
(approximately 2 seconds) recorded using a FLIR A400 radiometric thermal camera. Motion 
detection in video relies on brightness comparisons between frames. To minimize false motion 
detections, per-pixel brightness values are averaged over the previous 50 frames to create a 
background image for comparison with the current video frame. 

Figure A-1. Depiction of Thermal Video Noise. The left frame shows a detail of a radiometric thermal video taken with 
the FLIR A400 scientific thermal camera, with a single pixel highlighted. The right frame shows the temperature change 
of this pixel over 29 frames, representing approximately 2 seconds of elapsed time. 
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A.4: Compare current image to background 
The averaged background brightness values and the current pixel values are differenced 
(subtracted). The absolute value of the result is then compared with a user-defined threshold, and 
any pixel with a change exceeding this value is considered a “motion.” A new binary image (all pixels 
are either 100% black or 100% white) is created, and any identified motion pixels are set to white in 
this image (Figure A-2). 

Figure A-2. Background Segmentation Process. The left frame represents the averaged background image. The center 
frame shows the current frame, with differences to the background image highlighted (black ovals). The right frame 
shows the built binary image with white regions indicating areas of difference between current and background frames 
(highlighted in green ovals for visibility). 

A.5: Identify motion regions 
Each contiguous area of white pixels in the binary image is considered an area of motion. Optionally, 
the outer edge of the pixel areas can be expanded and then contracted (closing holes inside of areas 
of motion and merging multiple small moving objects into a single larger motion). This can reduce 
the number of nearby movements tracked (Figure A-3). If this optional step is performed it is 
important that the edges of motion regions not be contracted more than they were expanded, and 
expansion must happen before contraction. Failing to follow these guidelines could result in 
completely losing very small areas of motion. 

Figure A-3. Motion Region Refinement. The left frame represents the areas of motion identified in the right frame of 
Figure A-2 above. The right frame shows these regions after the dilation and contraction process, consolidating nearby 
movements. 
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A.6: Motion prediction 
Each track’s internal Kalman filter is queried to determine the expected current position of all known 
moving objects (Figure A-4). The Kalman filter builds an estimate based on past object locations and 
velocity. The results of those estimates are then passed to the track assignment step. 

Figure A-4. Kalman Filtering of Motion Detections Over Time. The white circle and gray box represent the current 
location of a moving object, and the darker gray circles and boxes are previously identified locations of the same 
moving object. Red arrows represent movement of the object between individual detections. Based on the previous 
locations of the object, a projected direction/speed is estimated (yellow dotted line), and the estimated new location 
region is defined (orange dashed circle). Current-frame movement detections within this area will be evaluated as 
possible continuations of the observed object’s movement.   

A.7: Track assignment 
The Munkres/Hungarian algorithm with thresholding is used to determine the best match between 
existing tracked objects and the current frame’s movements. A linear least squares comparison is 
performed, with a cost threshold that adjusts likelihood of assignment vs non-assignment. Possible 
outcomes of this process follow: 

• Match between a motion and an existing track 

o The existing track’s current position is updated with the assigned motion results 

• Track with no matching motion 

o The track is  flagged as  “unseen” and the expected location is updated for the next  
frame. 

• Motion with no matching track 

o The motion is identified as a new moving object. A track is created for the new object 

At the end of this step, all motions are associated with a track (Figure A-5). 
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Figure A-5. Assignment of Movement Detections to Tracks. Individual tracks are labeled with orange numbers. The dark 
gray circles represent the position of the object 2 frames ago, medium gray circles represent the position of the object 
1 frame ago, and white circles represent current position. The red circle to the right of track 1 indicates the expected 
position of the tracked movement based on the track’s internal Kalman filter prediction. 

A.8: Evaluate Movement 
Each track’s motion is evaluated heuristically. In order to separate hazardous falling objects from 
other movements, track movements are compared to direction, speed, and motion consistency 
criteria. Direction of motion is compared to an allowable cone of fall angles (which can be adjusted 
based on underlying slope characteristics). Speed of motion is compared to minimum and maximum 
thresholds. Motions which have been tracked as moving upwards for more than a threshold length 
of time are eliminated from consideration. Movements that meet all of these criteria are designated 
as “falling” objects. These falls are then compared to a minimum fall distance (in pixels) and time (in 
frames). Falling objects which exceed these minimums are designated as hazardous falling objects 
and alarmed for. 

A.9: Alarm 
The rockfall detection system has multiple alert options.   

A.9.1: Visual 
The visual alerts have adjustable options for width and color. By default, fall events that are 
spatiotemporally distinct are represented on-screen by different colors of movement traces (Figure 
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A-6). Falling rocks can break apart or dislodge other debris, and the resulting secondary fall events 
share a color with their “parent” event. The randomization of colors can be disabled in favor of a 
singular alert color if desired. The surface area magnitude of the fall event is represented by line width 
of the motion trace, which is based on the natural log of the moving surface area (larger apparent 
movements are traced with thicker lines). 

Figure A-6. Visual Trace/Alert of Movement Extracted from a Thermal Video. The blue line represents the motion trace 
of a rockfall event. 

A.9.2: Audio 
Audio alerts are currently implemented for computers using the Windows operating system. The 
current audio alarm sound is a system alert/error sound repeated every 0.5 seconds during a 
detected fall, and ends once the falling motion is no longer detected. 

A.9.3: File output 
Rockfall events can be written to a text file in .csv format. Algorithm ouputs used for the empirical 
correlations described in Section 6 recorded the initiation of any rockfall discovered in the phase 1 
thermal video recordings from Mines 7 and 8. The output files included timestamp, 2D pixel location, 
source video file, and frame number of the detection. Timestamps for archived sources are 
calculated by the video start time (included in filename), frame number, and framerate, and are thus 
unaffected by the speed or system time of the computer running the algorithm. 
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Appendix B: Meteorological Data and Modeling Results 
B.1 Precipitation Events 
Precipitation events were delineated using the Coefficient of Variation method for calculation of 
Inter-Event Time Definition, which determines the minimum time between precipitation pulses to 
consider them as coming from independent precipitation events. 
Table B-1: Precipitation Events and Intensity of Precipitation Event at each Mine. 

Mine 7 Mine 8 

Event Intensity 
(mm/hr) Event Intensity (mm/hr) 

1 0.38 1 1.55 
2 0.18 2 1.10 
3 0.27 3 6.99 
4 0.21 4 1.16 
5 0.46 5 1.69 
6 0.14 6 0.52 
7 0.07 7 2.23 
8 0.11 8 0.64 
9 0.37 9 1.82 
10 0.40 10 1.54 
11 0.10 11 2.09 
12 0.15 12 6.33 
13 1.10 13 0.70 
14 0.18 14 0.32 
15 0.57 15 6.02 
16 0.13 16 1.25 
17 0.17 17 0.67 
18 0.41 18 3.65 
19 0.16 19 1.71 
20 0.28 20 0.64 
21 0.16 - - 
22 0.55 - - 
23 0.14 - - 
24 0.32 - - 
25 0.13 - - 
26 0.10 - - 
27 0.23 - - 
28 0.79 - - 
29 0.18 - - 
30 0.06 - - 
Average 0.28 Average 2.13 
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B.2 Weight of Evidence and Information Value 
Table B-2: Raw Calculated Values for Weight of Evidence (WOE) & Information Value (IV) at Mine 7. Event refers to an 
instance of rockfall initiation observed while Non-Event refers to an instance of no rockfall initiation observed. 

Temperature 

Bin Instance 
Count 

Percent Total 
Instances Non-Event Event Event Empirical 

Probability WOE Bin IV Parameter IV 

[-Inf,-29.45) 1 0.08% 0 1 100.00% -7.54E-01 1.04E-03 2.79E-02 
[-29.45,-14.71) 101 8.44% 44 57 56.44% -5.05E-01 2.31E-02 2.79E-02 

[-14.71,0.02) 898 75.02% 275 623 69.38% 5.37E-02 2.14E-03 2.79E-02 
[0.02,14.77) 196 16.37% 60 136 69.39% 5.42E-02 4.76E-04 2.79E-02 
[14.77,Inf) 1 0.08% 1 0 0.00% -7.74E-01 1.09E-03 2.79E-02 

Wind 
[-Inf,1.76) 943 78.78% 295 648 68.72% 2.40E-02 4.53E-04 8.77E-03 

[1.76,3.52) 209 17.46% 71 138 66.03% -9.83E-02 1.71E-03 8.77E-03 
[3.52,5.23) 37 3.09% 13 24 64.86% -1.50E-01 7.11E-04 8.77E-03 
[5.23,7.05) 7 0.58% 1 6 85.71% 1.03E+00 4.86E-03 8.77E-03 
[7.05,Inf) 1 0.08% 0 1 100.00% -7.53E-01 1.03E-03 8.77E-03 

Solar Irradiance 
[-Inf,261.50) 995 83.20% 296 700 70.28% 9.79E-01 7.82E-03 4.89E-02 

[261.50,522.83) 102 8.52% 44 58 56.8% -4.87E-01 2.17E-02 4.89E-02 
[522.83,784.15) 75 6.26% 33 42 56.00% -5.21E-01 1.84E-02 4.89E-02 

[784.15,1045.47) 23 1.92% 7 16 69.56% 6.38E-02 7.73E-05 4.89E-02 
[1045.47,Inf) 1 0.08% 0 1 100.00% -7.53E-01 1.03E-03 4.89E-02 

Precipitation 
[-Inf,0.51) 1184 98.91% 377 807 68.16% -4.21E-03 1.75E-05 1.52E-02 

[0.51,1.03) 10 0.84% 1 9 90.00% 1.43E+00 1.20E-02 1.52E-02 
[1.03,1.54) 1 0.08% 1 0 0.00% -7.75E-01 1.10E-03 1.52E-02 
[1.54,2.05) 1 0.08% 1 0 0.00% -7.75E-01 1.10E-03 1.52E-02 
[2.05,Inf) 1 0.08% 0 1 100.00% -7.55E-01 1.04E-03 1.52E-02 

Rolling Sum of Precipitation Past 24 Hours 
[-Inf,1.89) 1047 87.47% 340 707 67.53% -3.34E-02 9.81E-04 6.40E-02 

[1.89,3.78) 79 6.60% 18 61 77.22% 4.55E-01 1.24E-02 6.40E-02 
[3.78,5.67) 30 2.51% 3 27 90.00% 1.43E+00 3.60E-02 6.40E-02 
[5.67,7.56) 25 2.09% 12 13 52.00% -6.85E-01 1.07E-02 6.40E-02 
[7.56,Inf) 16 1.34% 7 9 56.25% -5.14E-01 3.81E-03 6.40E-02 

Precipitation Intensity 
[-Inf,0.18) 1154 96.41% 371 783 67.85% -1.33E-02 1.72E-04 1.28E-02 

[0.18,0.37) 9 0.75% 1 8 88.89% 1.32E+00 9.46E-03 1.28E-02 
[0.37,0.55) 31 2.59% 8 23 74.19% 2.96E-01 2.13E-03 1.28E-02 
[0.55,0.73) 1 0.08% 0 1 100.00% -7.50E-01 1.03E-03 1.28E-02 
[0.73,Inf) 2 0.17% 0 2 100.00% -5.71E-02 8.21E-06 1.28E-02 

Freezing Potential 
[-Inf,7.37) 843 70.43% 247 596 70.70% 1.18E-01 9.58E-03 8.55E-02 

[7.37,14.73) 253 21.14% 89 164 64.82% -1.52E-01 4.98E-03 8.55E-02 
[14.73,22.10) 86 7.18% 43 43 50.00% -7.63E-01 4.59E-02 8.55E-02 
[22.10,29.46) 14 1.17% 1 13 92.86% 1.80E+00 2.39E-02 8.55E-02 

[29.46,Inf) 1 0.08% 0 1 100.00% -7.53E-01 1.03E-03 8.55E-02 
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Table B-3: Raw Calculated Values for Weight of Evidence (WOE) & Information Value (IV) Mine 8. Event refers to an 
instance of rockfall initiation observed while Non-Event refers to an instance of no rockfall initiation observed.   

Temperature 

Bin Instance   
Count 

Percent 
Total 

Instances 

Non-Event Event 
Event 

Empirical   
Probability 

WOE Bin IV Parameter IV 

[-Inf,22.49) 239 11.85% 96 143 59.83% 5.82E-01 4.01E-02 1.89E-01 
[22.49,28.44) 693 34.36% 433 260 37.52% -3.26E-01 3.57E-02 1.89E-01 
[28.44,34.39) 520 25.78% 333 187 35.96% -3.93E-01 3.86E-02 1.89E-01 
[34.39,40.34) 437 21.67% 193 244 55.84% 4.18E-01 3.81E-02 1.89E-01 

[40.34,Inf) 128 6.35% 46 82 64.06% 7.62E-01 3.64E-02 1.89E-01 
Wind 

[-Inf,1.08) 1806 89.54% 978 828 45.85% 1.73E-02 2.67E-04 3.64E-03 
[1.08,2.16) 195 9.67% 115 80 41.03% -1.79E-01 3.07E-03 3.64E-03 
[2.16,3.24) 14 0.69% 7 7 50.00% 1.84E-01 2.36E-04 3.64E-03 
[3.24,4.32) 1 0.05% 1 0 0.00% 1.74E-01 2.99E-05 3.64E-03 
[4.32,Inf) 1 0.05% 0 1 100.00% 1.94E-01 3.72E-05 3.64E-03 

Solar Irradiance 
[-Inf,288.24) 1461 72.43% 857 604 41.34% -1.66E-01 1.97E-02 9.20E-02 

[288.24,576.47) 119 5.90% 38 81 68.07% 9.41E-01 5.07E-02 9.20E-02 
[576.47,864.71) 157 7.78% 75 82 52.23% 2.73E-01 5.84E-03 9.20E-02 

[864.71,1152.95) 263 13.04% 125 138 52.47% 2.83E-01 1.05E-02 9.20E-02 
[1152.95,Inf) 17 0.84% 6 11 64.71% 7.90E-01 5.18E-03 9.20E-02 

Precipitation 
[-Inf,5.28) 1995 98.91% 1101 894 44.81% -2.07E-02 4.23E-04 5.21E-02 

[5.28,10.58) 15 0.74% 0 15 100.00% 2.91E+00 4.50E-02 5.21E-02 
[10.58,15.86) 4 0.20% 0 4 100.00% 1.58E+00 5.50E-03 5.21E-02 
[15.86,26.43) 1 0.05% 0 1 100.00% 1.98E-01 3.87E-05 5.21E-02 

[26.43,Inf) 2 0.10% 0 2 100.00% 8.91E-01 1.15E-03 5.21E-02 
Rolling Sum of Precipitation Past 24 Hours 

[-Inf,10.73) 1715 85.03% 957 758 44.20% -4.83E-02 1.97E-03 2.83E-02 
[10.73,21.46) 187 9.27% 99 88 47.06% 6.71E-02 4.18E-04 2.83E-02 
[21.46,32.19) 71 3.52% 32 39 54.93% 3.83E-01 5.18E-03 2.83E-02 
[32.19,42.93) 42 2.08% 13 29 69.05% 9.87E-01 1.96E-02 2.83E-02 

[42.93,Inf) 2 0.10% 0 2 100.00% 8.88E-01 1.14E-03 2.83E-02 
Precipitation Intensity 

[-Inf,3.55) 1987 98.51% 1098 889 44.75% -2.44E-02 5.90E-05 4.71E-02 
[3.55,7.11) 23 1.14% 3 20 86.96% 2.08E+00 3.98E-02 4.71E-02 

[7.11,10.66) 1 0.05% 0 1 100.00% 1.97E-01 3.84E-05 4.71E-02 
[10.66,17.77) 4 0.20% 0 4 100.00% 1.58E+00 5.49E-03 4.71E-02 

[17.77,Inf) 2 0.10% 0 2 100.00% 8.89E-01 1.14E-03 4.71E-02 
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Figure B-1: Empirical Event Probability based on Distribution of Instances for Temperature at Mine 7. 

Figure B-2: Empirical Event Probability Based on Distribution of Instances for Wind at Mine 7. 
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Figure B-3: Empirical event probability based on distribution of instances for solar irradiance at Mine 7. 

Figure B-4: Empirical event probability based on distribution of instances for precipitation at Mine 7. 
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Figure B-5: Empirical Event Probability Based on Distribution of Instances for 24-Hour Precipitation at Mine 7. 

Figure B-6: Empirical Event Probability Based on Distribution of Instances for Precipitation Intensity at Mine 7. 
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Figure B-7: Empirical Event Probability Based on Distribution of Instances for Freezing Potential at Mine 7. 

Figure B-8: Empirical Event Probability Based on Distribution of Instances for Temperature at Mine 8. 
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Figure B-9: Empirical Event Probability Based on Distribution of Instances for Wind at Mine 8. 

Figure B-10: Empirical Event Probability Based on Distribution of Instances for Solar Irradiance at Mine 8. 
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Figure B-11: Empirical Event Probability Based on Distribution of Instances for Precipitation at Mine 8. 

Figure B-12: Empirical Event Probability Based on Distribution of Instances for 24-hour Precipitation at Mine 8. 
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Figure B-13: Empirical Event Probability Based on Distribution of Instances for Precipitation Intensity at Mine 8. 

0.45 

0.87 

1.00 1.00 1.00 

0.00 

0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

0.80 

0.90 

1.00 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

[-Inf,3.55) [3.55,7.11) [7.11,10.66) [10.66,17.77) [17.77,Inf) 

Event Em
pirical Probability

Ev
en

t D
is

tr
ib

ut
io

n 
of

 In
st

an
ce

s 

Precipitation Intensity (mm/hr) 

Mine 8: Precipitation Intensity (IV = 0.047) 

Non-Event Event 

Automated Rockfall Detection from Thermal Imaging | Final Report

31 August 2024 BAA: 75D301-22-R-61070 Page 69 of 78



B.3 Logistic Regression Outputs 

Table B-4: Calculated P-Values of Parameters Fit to Logistic Regression Model for Mine 7. Trend reflects how each value 
in each bin is changing in time relative to the previous value. Significance values denoted by asterisks. See Figure X for 
example time series of trends.   

Parameter Interval 
P-Values1 

Increasing Trend Decreasing Trend Static Trend 

Freezing Potential 
(°C*hour) 

0 to 5.89 0.159 NA 0.088 
5.89 to 11.78 0.25 0.285 NA 

11.78 to 17.68 0.438 0.932 NA 
17.68 to 23.57 0.23 0.973 NA 
23.57 to 29.46 0.98 0.837 NA 

Temperature 
(°C) 

-29.45 to -20.61 0.93 NA NA 
-20.61 to -11.76 0.838 0.42 NA 
-11.76 to -2.92 0.192 NA 0.786 

-2.92 to 5.93 0.343 0.658 NA 
5.93 to 14.77 NA NA 0.682 

Rolling Sum of Precipitation in 
Previous 24 Hours 

(mm) 

0 to 1.89 0.054 NA 0.003** 
1.89 to 3.78 0.011* 0.473 0.811 
3.78 to 5.68 0.381 0.993 0.543 
5.68 to 7.57 0.001*** 0.985 0.06 
7.57 to 9.46 0.786 0.001*** 0.993 

Solar Irradiance 
(W/m2) 

0.01 to 11.83 0.001*** NA 0.355 
11.83 to 23.65 0.665 0.077 NA 
23.65 to 35.48 0.108 0.058 NA 
35.48 to 47.31 0.354 0.787 NA 
47.31 to 59.14 0.85 0.986 NA 

1: * p <.05, ** p <0.01, ***p<0.001 
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Table B-5: Calculated P-Values of Parameters Fit to Logistic Regression Model for Mine 8. Trend reflects how each value 
in each bin is changing in time relative to the previous value. Significance values denoted by asterisks. See Figure X for 
example time series of trends.   

Parameter Interval 
P-Values1 

Increasing Trend Decreasing Trend Static Trend 
Rolling Sum 

of 
Precipitation 

Past 24 
Hours 
(mm) 

0 to 3.38 0.174 NA 0.288 
3.38 to 6.76 0.674 0.333 0.17 

6.76 to 10.14 0.175 0.033* 0.074 
10.14 to 13.52 0.989 0.993 0.81 
13.52 to 16.9 0.988 0.584 0.286 

Precipitation 
Intensity 
(mm/hr) 

0 to 1.40 0.607 NA 0.468 
1.40 to 2.80 0.986 NA 0.261 
2.80 to 4.20 0.999 NA NA 
4.20 to 5.60 NA NA NA 
5.60 to 7.0 0.992 NA 1 

Solar 
Irradiance 

(W/m2) 

0 to 16.61 0.001*** NA 0.01** 
16.61 to 33.22 0.001*** 0.004** NA 
33.22 to 49.83 0.015* 0.235 NA 
49.83 to 66.44 0.028* NA NA 
66.44 to 83.0 0.002** NA NA 

Temperature 
(°C) 

16.54 to 22.49 0.003** 0.001*** 0.94 
22.49 to 28.44 0.818 0.001*** 0.994 
28.44 to 34.39 0.161 0.413 0.995 
34.39 to 40.34 0.298 0.887 0.994 
40.34 to 62.83 0.136 NA 0.357 

Precipitation 
(mm) 

0 to 2.29 0.98 0.995 NA 
2.29 to 4.58 0.99 NA NA 
4.58 to 6.87 0.996 NA NA 
6.87 to 9.16 NA NA NA 

9.16 to 11.45 0 0 0 
1: * p < .05, ** p <0.01, ***p<0.001 
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B.4 Meteorological Summaries

Figure B-14: Time Series of Meteorological Conditions over the Course of Deployment – Mine 7 

Figure B-15: Time Series of Meteorological Conditions over the Course of Deployment – Mine 8 
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B.5 Meteorological Trends 
Meteorological trends were determined by considering how each data point changes in reference to 
the preceding data point. 

Figure B-17: Example Visualization of 20% Bins Schema and Trends Based on Wind at Mine 8. 
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B.6 Receiver Operating Characteristic Curves

  
Figure B-18: Mine 7 Receiver Operating Characteristic curve for each logistic regression model. 

Figure B-19: Mine 8 Receiver Operating Characteristic curve for each logistic regression model. 
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B.7 Coefficients, Odds Ratio, P-Values, and Confidence Intervals for 
Preliminary Model Runs. 

Table B-6:  Odds ratios, confidence intervals, and p-values for Mine 7, bins only 
Parameter Interval OR CI(95%) P-Value 

Freezing Potential  (°C*hour) 

0 to 5.89 -- -- -- 
5.89 to 11.78 0.84 0.61 0.32 

11.78 to 17.68 0.88 24.07 0.93 
17.68 to 23.57 0.88 27.86 0.94 
23.57 to 29.46 2.27 182.67 0.69 

Temperature (°C) 

-29.45 to -20.61 1.49 64.52 0.82 
-20.61 to -11.76 0.71 19.24 0.82 
-11.79 to -2.92 -- -- -- 

-2.92 to 5.93 1.00 0.74 0.99 
5.93 to 14.77 1.10 2.12 0.83 

Rolling Sum of Precipitation in 
Previous 24 Hours (mm) 

0 to 1.892 -- -- -- 
1.892 to 3.784 1.54 1.91 0.14 
3.784 to 5.676 4.15 16.13 0.021 * 
5.676 to 7.568 0.46 0.85 0.06 
7.568 to 9.46 0.52 1.29 0.20 

Solar Irradiance (W/m2) 

0 to 11.827 -- -- -- 
11.827 to 23.653 0.55 0.53 0.01* 
23.653 to 35.481 0.40 0.40 0.001*** 
35.481 to 47.307 0.63 0.95 0.19 

47.307 to 59.145 1.10 3.64 0.88 

Table B-7:  Odds ratios, confidence intervals, and p-values for Mine 7, untrended, no binning 
Parameter OR CI(95%) P-Value 

Temperature 1.0229601 0.155 0.5538 
Solar Irradiance (W/m2) 0.9988511 0.021 0.001** 

Rolling Sum of Precipitation in 
Previous 24 Hours (mm) 0.9954998 0.155 0.91 

Freezing Potential (°C*hour) 0.9927684 0.169 0.87 
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Table B-8: Odds ratios, confidence intervals, and p-values for Mine 7, trended, no binning 

Parameter 
  

OR     CI(95%)     P-Value     

Increasing 
Trend 

Decreasing 
Trend 

Static 
Trend 

Increasing 
Trend 

Decreasing 
Trend 

Static 
Trend 

Increasing 
Trend 

Decreasing 
Trend 

Static 
Trend 

Freezing Potential (°C*hour) 1.74 -- 1.84 2.69 -- 2.02 0.12 -- 0.02* 

Temperature (°C) 1.38 -- 1.91 1.99 -- 40.61 0.34 -- 0.59 

Rolling Sum of Precipitation in 
Previous 24 Hours (mm) 0.49 -- 0.53 0.78 -- 0.69 0.06 -- 0.049* 

Solar Irradiance (W/m2) 1.59 -- 0.00 0.85 -- -- 0.00 -- 0.97 

Table B-9:  Odds ratios, confidence intervals, and p-values for Mine 8, bins only 

Parameter Interval OR CI(95%) P-Value 

Precipitation Intensity (mm/hr) 

0 to 3.55 -- -- -- 

3.55 to 7.11 3.51 12.04 0.06 

7.11 to 10.66 1.46 -- 1.00 

10.66 to 14.21 -- -- -- 

14.21 to 17.77 381178.9 -- 0.99 

Temperature (°C) 

16.54 to 22.49 -- -- 0.82 

22.49 to 28.44 0.42 0.26 0.00 

28.44 to 34.39 0.34 0.23 0.00 

34.39 to 40.34 0.73 0.59 0.12 

40.34 to 46.30 1.08 1.19 0.77 

Rolling Sum of Precipitation in 
Previous 24 Hours (mm) 

0 to 8.59 -- -- -- 

8.59 to 17.17 1.11 0.69 0.50 

17.17 to 25.76 0.77 0.85 0.32 

25.76 to 34.34 2.22 2.94 0.01 

34.34 to 42.93 1.85 2.90 0.09 

Solar Irradiance (W/m2) 

0 to 288.24 -- -- -- 

288.24 to 576.47 2.66 2.41 0.00 

576.47 to 864.71 1.00 0.85 0.99 

864.71 to 1152.92 1.04 0.75 0.84 

1152.95 to 1441.18 2.15 5.38 0.15 

Precipitation (mm) 

0 to 5.82 -- -- -- 

5.82 to 11.63 2372164 3.32E+305 0.97 

11.63to 17.45 4286261 -- 0.98 

17.45 to 23.27 19.44 -- 1.00 

23.27 to 29.08 5.92 -- 1.00 
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Table B-10:  Odds ratios, confidence intervals, and p-values for Mine 8, untrended, no binning 
Parameter OR CI(95%) P-Value 

Temperature 0.99 0.041 0.22643 

Solar Irradiance (W/m2) 1.00 0.001 0.0001*** 

Precipitation (mm) 3.42 8.939 0.01* 

Rolling Sum of Precipitation in 
Previous 24 Hours (mm) 1.02 0.024 0.001** 

Precipitation Intensity (mm/hr) 1.69 1.401 0.001** 

Table B-11: Odds ratios, confidence intervals, and p-values for Mine 8, trended, no binning 

Parameter 
OR CI(95%) P-Value 

Increasing 
Trend 

Decreasing 
Trend 

Static 
Trend 

Increasing 
Trend 

Decreasing 
Trend 

Static 
Trend 

Increasing 
Trend 

Decreasing 
Trend 

Static 
Trend 

Precipitation Intensity (mm/hr) 4.07 -- 1.00 34.48 -- 2.33 0.15 -- 1.00 

Temperature (°C) 2.36 -- 1.60 0.96 -- 13.49 0.00 -- 0.65 

Precipitation (mm) 2.02 -- 0.54 4.47 -- 1.39 0.14 -- 0.25 
Rolling Sum of Precipitation in 

Previous 24 Hours (mm) 0.62   0.50 1.47   1.17 0.35   0.17 

Solar Irradiance (W/m2) 2.19 -- 0.00 0.85 -- NA 0.00 -- 0.97 

Automated Rockfall Detection from Thermal Imaging | Final Report

31 August 2024 BAA: 75D301-22-R-61070 Page 77 of 78



Appendix C: Data Access 
The data used in Phase 2 of the thermal project will be stored by the University of Arizona for a period 
of at least 4 years. This data can include, but is not limited to, unprocessed thermal video, weather 
data, rockfall detection algorithm output, camera calibration data, and tables of analyses. 
Ownership of original video materials remains with the mine sites at which video was collected, and 
availability of these videos may vary based on confidentiality and privacy agreement terms with 
various site operators. Please contact project primary investigators with any questions about data 
ability or the use of data from this BAA for further research. The online data repository is accessible 
at the following URL: 

https://data.cyverse.org/dav-
anon/iplant/projects/rockfall/NIOSH_Thermal_imaging_data/Phase2DataRepository/ 
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